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Abstract 

The editorial in the March 2019 special issue of The American Statistician (TAS) promises 

several useful outcomes if we abandon using the concept of “statistical significance” in scien-

tific research. Two of the promises are that (a) abandoning statistical significance will lead to 

fewer false-positive errors in scientific research, and (b) abandoning statistical significance 

will make it easier to replicate scientific research results. The present paper discusses the role 

of statistical significance as a gateway to publication in scientific journals. The paper then 

shows how abandoning statistical significance as a gateway to publication will lead to more 

false-positive errors in published research and will make published research results harder to 

replicate. 
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1. Introduction 

In March 2019, The American Statistical Association pub-

lished a special issue of The American Statistician (TAS). The 

issue’s theme is “Statistical Inference in the 21st Century: A 

World Beyond p < 0.05”. The issue begins with a 19-page 

editorial that carefully summarizes the thinking in the 43 pa-

pers in the issue (Wasserstein, Schirm, and Lazar 2019). 

The first sentence of the editorial identifies a key goal of 

both science and statistics, which is to separate the signal from 

the noise in data. This paper focuses on that goal. 

Section 2 of the editorial is titled “Don’t Say ‘Statistically 

Significant’ ”. It is widely agreed among statisticians and ex-

perienced researchers that a scientific research result is 

deemed “statistically significant” if the properly computed p-

value for the result is less than (or equal to) a chosen “critical” 

p-value, which is usually 0.05 or 0.01. As discussed below, 

the critical p-value helps us to separate the signal from the 

noise in scientific research data. 

Section 2 of the editorial notes the important fact that the 

concept of statistical significance is widely misinterpreted by 

less experienced researchers and by students. It concludes that 

the misinterpretation has led the concept to become “mean-

ingless”, and its original sensible interpretation is “irretrieva-

bly lost”. It also notes that (a) the concept of statistical signif-

icance can lead to erroneous beliefs and poor decision-mak-

ing, (b) the concept doesn’t [directly] imply truth or im-

portance, and (c) the concept prevents negative results from 

being published which, the section suggests, can “distort the 

[scientific] literature”. Section 2 concludes:  

For the integrity of scientific publishing and research 

dissemination, therefore, whether a p-value passes any 

arbitrary threshold should not be considered at all 

when deciding which results to present or highlight 

(2019, p. 2). 

The editorial promises that several positive outcomes will oc-

cur if we abandon using statistical significance (i.e., if we 

abandon critical p-values) in evaluating scientific research re-

sults. The following discussion considers two of the promised 

                                                           
* Email: donmac@matstat.com 

outcomes, which are both highly attractive. But both out-

comes appear to be unattainable. And, if we abandon statisti-

cal significance, we will get the undesirable opposite out-

comes. 

2. A Practical Use of a Critical p-Value in Scientific 
Publishing 

To prepare for discussion of the two outcomes, and in keeping 

with the editors’ theme of the integrity of scientific publish-

ing, let us review the use of a critical p-value by a scientific 

journal as a gateway to publication of scientific papers sub-

mitted to the journal. This is a key practical use of a critical 

p-value. Let us consider a standard view of how the gateway 

works: 

2.1 Discovering Effects in Populations 

A paper that describes the results of an empirical (i.e., data-

based) scientific research study generally reports the discov-

ery of a new “effect” that the research has (apparently) dis-

covered in the population of entities under study. We can of-

ten sensibly view an effect as being equivalent to the existence 

of a relationship between two or more variables.  

For example, a medical research study may discover good 

evidence of a relationship between:  

• the amount, 𝑥, of a new treatment (e.g., a drug) given to 

patients and 

• a measure of the patients’ subsequent health, 𝑦.  

If the side effects of the treatment are minimal, the discovery 

of a useful relationship between variables 𝑥 and 𝑦 in patients 

will help doctors to control (i.e., optimize) the values of 𝑦 in 

new patients from the population. (Doctors do this by helping 

the patients to suitably adjust the values of 𝑥.) These basic 

ideas underlie most clinical research in medicine—how can 

we improve some variable 𝑦 in patients by adjusting some 

other variable(s) 𝑥 in them? 

The preceding ideas readily generalize to all fields of sci-

entific research. This is because every field is interested in 
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discovering and studying effects (usually relationships be-

tween variables) in entities in populations that are of interest 

to the field. For example, astronomers discover and study re-

lationships between variables in the populations of celestial 

objects and celestial waves. 

In any field of science, if we can find good evidence of a 

new relationship between variables, then we can use the 

knowledge of the relationship to predict or control the values 

of the “response” variable, 𝑦, in new entities from the popu-

lation. We can also use the knowledge of the relationship to 

help us to understand how the entities in the population work. 

If the variables are chosen carefully, the abilities to predict, 

control, and understand based on a relationship between var-

iables are often highly useful. 

2.2 The Research Hypothesis and the Null 

Hypothesis 

In many scientific research studies, the researcher will have a 

“research hypothesis”. This hypothesis typically says that a 

relationship exists between a predictor variable, 𝑥, and a re-

sponse variable, 𝑦, in the entities in the studied population of 

entities. 

Following an old tradition, the research hypothesis is 

sometimes referred to as the “alternative hypothesis”. How-

ever, that is a misnomer because it inappropriately downplays 

the vital importance of the research hypothesis. 

In contrast to the research hypothesis, the “null hypothe-

sis” says that no relationship exists between 𝑥 and 𝑦 in the 

entities. Thus, the null hypothesis is “empty”—implying that 

nothing (i.e., no relationship) is there. 

For the sake of (a) logical sensibility, and (b) the principle 

of parsimony (Baker 2016), it is customary to begin the study 

of a new relationship between variables by formally assuming 

that the null hypothesis is true. That is, we assume that there 

is no relationship whatever between the predictor variable of 

interest and the response variable of interest in the entities in 

the population. This assumption helps us to avoid deceiving 

ourselves about a nonexistent relationship. 

Of course, informally, we believe (hope) the opposite—

we believe that our research hypothesis is true. And we be-

lieve that our study will find good evidence that the research 

hypothesis is true. This evidence will enable us to (tenta-

tively) “reject” the null hypothesis and conclude that the re-

search hypothesis is (likely) true in the population. The re-

mainder of the present subsection discusses some important 

ramifications of obtaining good evidence that a research hy-

pothesis is true. The next subsection discusses how we tell 

whether we have good evidence that a research hypothesis is 

true—how we tell whether we have good evidence that a re-

lationship exists between variables. 

If a research study obtains good evidence that its research 

hypothesis is true (e.g., good evidence of a new relationship 

between variables), then this is called a “positive” result. A 

positive result is gratifying for a researcher because it sug-

gests that the postulated relationship (effect) exists in the pop-

ulation. 

In contrast, if a research study fails to obtain good evi-

dence that its research hypothesis is true, then this is called a 

“negative” result. A negative result is disappointing for a re-

searcher because it implies that we must continue to assume 

that the empty null hypothesis is true. (As discussed in appen-

dix A, we can never prove that a given null hypothesis is true, 

but it is efficient to formally assume each one is true until 

someone empirically proves otherwise.) 

Unfortunately, negative results occur often in scientific re-

search, more than half the time in research studies in some 

fields. This is because nature’s secrets are hard to unlock, and 

thus many carefully-thought-out research hypotheses are un-

true. However, this isn’t a serious problem because experi-

enced researchers understand that their research hypotheses 

are sometimes untrue. In cases of negative results, researchers 

understand that the relationship or effect that they thought ex-

isted may not exist (or at least it doesn’t exist strongly enough 

for their present research to have detected it). 

Positive results are much more interesting than negative 

results in scientific research because we can do reliable pre-

diction or control with a correct positive result. For example, 

if medical researchers can find a usable relationship between 

(the amount of) a studied drug and (the amount of) a disease, 

then doctors can use the drug to treat the disease. But (with 

rare exceptions) we can’t do much with a negative result. For 

example, if there is no good evidence of a relationship be-

tween a studied drug and a disease, then doctors can’t do 

much with that. 

So, forward-looking scientists find that negative results 

are boring, not telling us anything substantial beyond the null 

hypothesis, which we had already assumed to be true at the 

start. (A negative result also tells us that the research failed to 

find what it was looking for, but it generally can’t say why, 

so a negative result is almost never definitive.) So, forward-

looking scientific journals are eager to publish papers describ-

ing new convincing positive results, which give readers new 

information about the entities in the studied population. But 

journals almost never publish papers describing negative re-

sults because these papers tell readers nothing new about the 

entities. 

The preceding ideas imply that the omission of publica-

tion of negative results doesn’t somehow distort the scientific 

research literature. This is because a negative result doesn’t 

tell us anything substantial beyond the status quo—beyond 

the fact that the null hypothesis appears to be true, which we 

had already sensibly assumed anyway by default. 

I discuss in a paper certain rare cases when negative re-

sults in scientific research are interesting and are therefore 

published (2018 app. L). 

2.3 How Do We Tell Whether We Have a Positive 

Result? 

So, how do we tell in a research study whether we have a pos-

itive result or a negative result? Similarly, how do we tell 

whether we have good evidence that a certain relationship ex-

ists between variables? Similarly, how do we tell whether we 

can reject the null hypothesis and conclude that the research 

hypothesis is (likely) true in the population? Similarly, how 

do we distinguish the signal from the noise in scientific re-

search data? Each of these questions is the same question, but 

from a different point of view. 

Many scientific journals use a critical-p-value gateway to 

help them to answer the question. This gateway says that if 

the (properly computed) p-value for an effect discovered in a 
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research study is less than (or equal to) the journal’s critical 

p-value, then the result is far enough above the noise to be a 

believable positive result if other important gateways are also 

successfully passed, as discussed below. Conversely, if the p-

value is greater than the journal’s critical p-value, then the 

result isn’t far enough above the noise to be believable (re-

gardless of whether the other gateways are passed), and thus 

the result is a negative result. 

These ideas reflect the fact that the p-value is a measure 

of the “weight of evidence” that the effect under study exists 

in the population. The lower the p-value for a research result 

below the critical value, the greater the weight of evidence (in 

a reasonable statistical sense) that the effect exists, as ex-

plained in appendix B. The p-value is a reasonable measure 

of weight of evidence because its scale is designed to be di-

rectly (and reasonably) comparable from one research result 

to the next. Of course, the p-value is a sensible measure of the 

weight of evidence only if it is used properly, as discussed 

below. 

The procedure of computing a p-value from research data 

and then comparing it to a critical p-value is often referred to 

as a “statistical test” of the research (or null) hypothesis. 

Many forms of statistical tests are available to enable us to 

test for the existence of the many forms of relationships and 

effects that are studied in scientific research. 

Journals use a critical-p-value gateway because if the 

weight of evidence for an effect reported in a paper is insuffi-

cient, then the studied effect may not exist (at least in any de-

tectable sense) in the population, and the paper may be report-

ing about mere statistical noise in the data. Journals don’t 

want to waste space and promote misunderstanding by pub-

lishing papers that report about mere noise. 

A journal using this gateway will say in its “Instructions 

to Authors” that a research paper submitted to the journal will 

be considered for publication only if the key p-value(s) in the 

paper is (are) less than the journal’s critical p-value. Most 

such journals follow the convention of using a critical p-value 

of either 0.05 or 0.01. 

2.4 False-Positive Errors 

Unfortunately, the critical p-value (like all other similar sta-

tistical gateways, such as the critical Bayes factor) isn’t per-

fect. Thus, sometimes when a critical p-value is used, the sta-

tistical test makes a “false-positive” error. (False-positive er-

rors are also called “Type 1” errors, but that name is empty, 

so it is confusing to beginners.) A false-positive error occurs 

if a research study obtains a positive result, but (unbeknown 

to the researcher and the journal) the null hypothesis is actu-

ally true (or at least in effect true) in the underlying popula-

tion—i.e., the studied effect (typically a relationship between 

variables) doesn’t exist. In terms of the p-value, a false-posi-

tive error occurs if the p-value for a result is less than (or equal 

to) the critical p-value, but the null hypothesis is (unbeknown 

to us) either actually or in effect true. 

A false-positive result in scientific research is misleading 

and costly because if the result is published, and if it is inter-

esting, then it leads other researchers to try to replicate or use 

the nonexistent effect. The replications or use attempts of a 

false-positive result will invariably fail (because the effect 

doesn’t exist), which is an unfortunate waste of resources. 

These failures are the source of the so-called “replication cri-

sis” in scientific research, which is discussed later below. 

False-positive errors in scientific research occur due to 

random chance and due to researcher errors. A journal can re-

duce the rate of false-positive errors due to random chance 

that are published in the journal by using a lower critical p-

value—the lower the critical p-value, the lower the rate of 

false-positive errors published in the journal.  

A researcher can reduce the rate of false-positive errors 

due to his or her own errors by ensuring that there is no rea-

sonable alternative explanation (e.g., measurement errors, 

analysis errors, logic errors, failure to satisfy technical statis-

tical assumptions, cherry-picking errors, confounding errors, 

data-entry errors, etc.) for their positive research results. Ex-

perienced researchers look carefully for reasonable alterna-

tive explanations of their results both in the vital design phase 

of the research and in the interpretation of the results. Re-

searchers do this out of respect for their discipline and to 

avoid embarrassing false-positive errors. 

Unfortunately, due to the whims of random chance, the 

publication of some false-positive errors in the scientific re-

search literature is unavoidable. Fortunately, the investigative 

nature of science guarantees that a false-positive result will 

always be later exposed as being (likely) false if the result is 

of any importance.  

False-positive errors are exposed through the process of 

independent replication of interesting results—a successful 

replication of a positive result greatly reduces the chance that 

the result is a false-positive error. Conversely, a failed repli-

cation of a positive result, though never definitive, somewhat 

increases the chance that the result is a false-positive error.  

Replications are somewhat hidden in scientific research 

because, for the sake of moving forward, most replications 

involve significant enhancements or modifications to the orig-

inal work. But in most scientific research there is a replication 

component in the background because science built out on ex-

isting ideas. 

Some people incorrectly think that the rate of publication 

of false-positive errors in a scientific journal should equal the 

critical p-value used by the journal. However, the false-posi-

tive publication rate is generally somewhat higher than the 

critical p-value. For example, suppose that 20 percent of the 

research hypotheses that are studied in some field of scientific 

research are true. Therefore, the other 80 percent of the re-

search hypotheses are, unfortunately, false—i.e., the corre-

sponding null hypothesis is actually (or, at least, in effect) true 

in the population. (The 20 percent seems a reasonable guess 

in some fields of scientific research, such as in some areas of 

medical research.) And suppose that all the journals in this 

field use a critical-p-value gateway to publication of 0.05. If 

certain other sensible assumptions are satisfied, then it is easy 

to show mathematically that the long-run rate of publication 

of papers in the research literature of the field in which the 

key result is a false-positive error will be roughly 25 percent, 

as explained in appendix C. 

The 25 percent false-positive publication rate in the re-

search literature is based on the assumptions in the preceding 

paragraph, and the percentage will be different if the assump-

tions are different. However, the key point is that a significant 

percentage of new results published in scientific journals will 

be false-positive errors. Fortunately, we can easily reduce the 
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rate of false-positive errors published in a journal by using a 

lower critical p-value, as noted above, though that has costs, 

as discussed below. 

Interestingly, we can’t know the actual rate of false-posi-

tive errors published in a field of scientific research because 

we generally don’t know the percentage of research hypothe-

ses that are true in the field, which is required to perform a 

reliable computation of the false-positive publication rate. If 

we wish to determine the percentage of research hypotheses 

that are true, then we would need to track negative results in 

scientific research. But science generally doesn’t track nega-

tive results because tracking them reliably is difficult (be-

cause they generally aren’t published, and most researchers 

don’t care much about them) and tracking them is sensibly 

judged to be not worth the effort. Fortunately, we don’t need 

to know the rate of false-positive errors in the published pa-

pers in a field of scientific research as long as we are aware 

that false-positive errors occur at a significant rate in every 

field, so we must be aware that any positive result could be a 

false-positive error. 

The fact that a false-positive error is possible in any em-

pirical research study explains why experienced researchers 

only tentatively draw conclusions in the papers that report 

their research studies. For example, a paper will typically say 

that the results of the research suggest (i.e., they don’t prove) 

that such and such effect or relationship between variables ex-

ists in the studied population. This reflects the cautious logic 

of scientific reasoning—the conclusions of a research study 

must remain tentative until they are successfully replicated 

and accepted by the relevant research community. 

Appendix D discusses the new initiative in some fields of 

scientific research to preregister scientific research studies. If 

this initiative is successful, it will help to eliminate some 

false-positive errors in scientific research and will enable us 

to track negative results in a field. 

2.5 False-Negative Errors 

If we can reduce the false-positive error rate in the scientific 

research literature by using a lower critical p-value, then why 

don’t we set the critical p-value at an extremely low value? 

The answer is that the lower we set the critical p-value, the 

higher the rate of false-negative errors “in” (i.e., omitted 

from) the literature. (False-negative errors are sometimes 

called “Type 2” errors.) A false-negative error occurs when 

we obtain a negative result in a research study but, unbe-

known to us, the effect actually exists in reasonable strength 

in the population. A false-negative error is costly because it 

leads to a loss of knowledge for society and a loss of reward 

for the researcher. 

False-negative errors are rarely discussed because they are 

by their nature hidden and therefore aren’t published. That is, 

there is no report of all the recent false-negative errors in a 

research field because nobody knows anything about these er-

rors except that they exist in a substantial number. (Even if 

we were to track negative results, this couldn’t directly tell us 

which of them are false negative results.) 

False-negative errors in scientific research are due to ran-

dom chance, due to inefficient research design, and due to re-

searcher errors. A researcher can reduce the rate of false-neg-

ative errors in his or her research due to random chance or due 

to inefficient research design by designing the research to 

maximize the “power” of the statistical tests in the research 

under the available resources. Methods for maximizing the 

power of statistical tests are described in statistics and data-

science textbooks and can be very effective for increasing the 

chance of finding good evidence of a studied effect (assum-

ing, of course, that the effect actually exists in the population). 

Easy-to-use software (e.g., nQuery or software included in 

some modern data-analysis software systems) is available to 

help researchers to design their research studies so that the 

statistical tests will have the maximum possible power to de-

tect the sought-after effects under the available resources. 

2.6 The Critical p-Value Balances the Rates of 

False-Positive Errors, False-Negative Errors, and 

Costs 

The consistent use of a critical p-value by a scientific journal 

enables the journal to help to balance the rates of false-posi-

tive and false-negative errors in the published literature in the 

field served by the journal. The lower an editor sets the critical 

p-value for a journal, the lower the published rate of false-

positive errors in the journal, but the higher the rate of false-

negative errors that are omitted from the journal. 

The cost of a scientific research study is another key vari-

able in the present discussion. This is because we can always 

decrease the rate of false-positive and false-negative errors in 

scientific research simply by appropriately spending more 

money on the research (to increase the quality of the research 

in various senses). This will reduce the error rates. But re-

searchers invariably have a limited research budget, so we 

must compromise between the error rates and the costs. The 

critical p-value helps us to do this. 

2.7 Why Must We Draw a Line? 

Although the 0.05 critical p-value is lenient (to reduce the rate 

of false-negative errors), it amounts to drawing a line. Argu-

ably, such a line is necessary for efficient scientific publish-

ing. This is because without the line, scientific journals would 

be swamped with submitted research papers whose results are 

weak. This is because, as suggested above, negative results 

occur often in scientific research. The line makes it easy for a 

journal to sensibly and fairly reject the multitude of submitted 

(or potentially submitted) research papers with negative (i.e., 

inconclusive) results. 

2.8 The Optimal Critical p-Value for a Field of 

Scientific Research 

How should a journal decide where to draw the line in choos-

ing the value of the critical p-value? The editors and the re-

searchers in a field would like to choose the critical p-value 

for a journal (or the critical range for a confidence interval, or 

the critical Bayes factor, etc.) so that the choice yields the 

maximum long-term social, scientific, or commercial payoff 

from the research in the field served by the journal. Through 

experience, editors and researchers have judged that critical 

p-values of 0.05 or 0.01 (or sometimes lower) seem approxi-

mately correct to maximize the payoff of research in a field. 

That is, these critical values seem to provide an acceptable 

mix of true positive results, false-positive errors, true negative 
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results, and false-negative errors in the research papers that 

are either published or potentially published by the journal. 

Unfortunately, the choice of the optimal critical p-value 

can’t be exact in a formal cost-benefit sense to maximize the 

payoff of scientific research in a field. This is because, in a 

practical sense, we can’t properly measure the relevant costs, 

benefits, and other features of ongoing scientific research in a 

field, which would be necessary to determine the current ex-

act optimal critical p-value for the field. So, a research com-

munity chooses the critical value based on intuitive sensibility 

among experienced researchers and journal editors. The 

choice is influenced by historical precedence in the relevant 

field and by overall custom in scientific research. The choice 

also depends somewhat on the journal’s prestige—a more 

prestigious journal can use a lower critical p-value (and 

thereby reduce the published rate of false-positive errors), but 

still get a good supply of high-quality submitted papers. It 

seems possible that, through a process of consensus, the pop-

ular critical p-values of 0.05 and 0.01 as gateways to publica-

tion are close to optimal to maximize the payoff of scientific 

research in a field. 

Although we (apparently) can’t choose the exact optimal 

critical p-value for a field of science, it is still highly sensible 

for statisticians to model the operation of the p-value gateway 

because this helps us to understand the scientific publishing 

process, which is a fulcrum of science. Campbell and Gus-

tafson (2019) develop a sensible mathematical model of the 

operation of the gateway, revealing interesting facts about the 

operation of scientific publishing, as discussed in appendix E. 

2.9 The Relationship Between the p-Value and 

Other Important Gateways to Publication 

As noted, all journals with a critical-p-value gateway will also 

have several other important gateways that a paper must also 

successfully pass before it will be accepted for publication. 

These gateways pertain to the journal-readers’ likely interest 

in the paper, the scientific importance of the paper’s result, 

the quality of the research design behind the paper, the related 

prior evidence, the plausibility of the studied mechanism, the 

absence of reasonable alternative explanations for the re-

search result, and so on, at the journal’s discretion. 

It is important to note that the critical-p-value gateway is 

in no way superior to the other gateways. This is because the 

critical-p-value gateway is merely a sensible way to tenta-

tively eliminate “chance” as a reasonable alternative explana-

tion of a scientific research result. “Chance” is merely one of 

many possible reasonable alternative explanations of a re-

search result that we must eliminate before we can reasonably 

believe the result. 

However, although the critical-p-value gateway isn’t su-

perior, journals that use this gateway will usually apply it to a 

paper first because, as noted, many journals sensibly believe 

it is a necessary gateway, and because it can be applied 

quickly, typically by an editor in under five minutes. If a sub-

mitted research paper fails to successfully pass the critical-p-

value gateway, then the evidence provided by the paper isn’t 

strong enough, and the editor can immediately reject the pa-

per, which saves the journal from spending any more time on 

the paper. 

In practice, the critical p-value gateway usually serves its 

function before a paper is submitted to a journal. This is be-

cause most researchers know that submitting a paper with a 

key p-value greater than a journal’s critical p-value would be 

a waste of time because the paper would be rejected. 

2.10 Setting the Critical p-Value on a Case-by-Case 

Basis 

Why not have a journal editor choose the critical p-value for 

each submitted paper at his or her discretion? That is, the ed-

itor could set the critical p-value for a paper depending on 

other aspects of the research, such as the perceived im-

portance of the paper’s result. This approach is fully con-

sistent with the idea of maximizing the payoff of scientific 

research. And the approach is clearly sensible in theory, espe-

cially in cases when it is easy for an editor to correctly assess 

the veracity and importance of a paper’s result. And, in gen-

eral, this approach is always open to a journal editor. 

However, many editors will agree that the veracity and 

importance of a research paper’s result often can’t be reliably 

determined until several years after the paper has been pub-

lished (after the relevant scientific community has had a 

chance to think about the paper, replicate its results, and com-

ment on it). Also, a discretionary choice of the critical p-value 

would, to be impartial, require an editor to perform a some-

what detailed study of each submitted paper which, given the 

large number of potential papers with nonsignificant results, 

and given the high complexity of many papers, the editors 

usually don’t have time to do.  

Also, there is little point in devoting time to studying a 

paper (no matter how brilliant or potentially important the pa-

per might be) if there is insufficient weight of evidence that 

the discovered effect is real in the population. (If the evidence 

is weak, the paper may be reporting mere noise.) Also, the 

number of interesting papers that successfully pass the 

weight-of-evidence gateway for a reputable journal is usually 

somewhat or substantially greater than there is room to pub-

lish in the journal, so the journal has a more-than-adequate 

pool of submitted papers with convincing weight of evidence 

from which to choose the papers to publish. 

So, to save time and conserve effort, the journal stipulates 

a simple, fair, and efficient rule—your weight of evidence 

must be better than (or equal to) our specified critical value or 

we won’t consider your paper for publication because you 

may be reporting mere noise. This saves the editorial board’s 

time, reduces the pool of submitted papers to a manageable 

size, and reduces (though doesn’t eliminate) the chance of 

publishing false-positive results. 

2.11 Alternatives to the p-Value 

As suggested above, various sensible alternatives to the p-

value are available to measure the weight of evidence pro-

vided by a scientific research result. These include the t-value, 

the confidence interval, the likelihood ratio, the Bayes factor, 

the second-generation p-value, and several other sensible 

measures. All these measures have critical values that (con-

ceptually) operate the same way as the critical p-value. I com-

pare some of the measures in the 2018 paper. 
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2.12 Bending the Rules About p-Values 

Virtually all researchers are highly interested in having their 

research papers published because (assuming a published pa-

per is correct) this advances human knowledge and because 

publications help to advance a researcher’s career. As noted, 

journals generally aren’t interested in publishing negative re-

sults. Therefore, some less experienced researchers will bend 

the rules about p-values to obtain a lower p-value (i.e., below 

the critical p-value) and to thereby give their research paper a 

chance of being published, if the other gateways can be 

passed. There are many ways to bend the rules. The rule bend-

ing may be either due to misunderstanding or due to unscru-

pulous intent.  

It is generally impossible for the editors and reviewers of 

a journal to detect rule bending in a submitted paper prior to 

publication (because the necessary information to enable 

them to detect the rule bending is generally hidden). The rule 

bending distorts the scientific research literature in the sense 

that it adds more false-positive errors to the literature. That is, 

many (though not all) cases of rule bending will be reporting 

false-positive results. 

Of course, the rule bending isn’t the fault of the measure 

of the weight of evidence (e.g., isn’t the fault of the p-value) 

and isn’t the fault of the use of the critical value for the meas-

ure. Instead, the rule bending is due to the researcher’s incom-

plete knowledge of the damaging ramifications of rule bend-

ing to science and to the researcher’s career.  

Rule bending damages science by adding an inordinate 

number of false-positive errors to the literature. Rule bending 

damages a researcher’s career because if a researcher pub-

lishes a report in which the key result is a false-positive error 

(whether obtained by rule bending or not), and if the result is 

at least somewhat important, then the error will always be 

later exposed in replication research, which tends to diminish 

the researcher’s reputation. The desire to properly advance 

science and the desire to maintain their reputations leads ex-

perienced researchers to be scrupulously careful about ob-

serving all the rules about p-values and about scientific re-

search in general. 

2.13 Do p-Values Make Decisions? 

Some people think a p-value together with a critical p-value 

decides whether an effect is real in the relevant population. Of 

course, that is a serious misunderstanding because p-values 

can make false-positive and false-negative errors. Instead of 

making decisions on its own, the p-value helps us (the scien-

tific research community, the decision-makers) to make deci-

sions. 

The ultimate decision-maker about the existence of a new 

effect in a population is always the relevant research commu-

nity (i.e., not the journal, not the individual researcher, and 

certainly not the critical p-value). Due to the possibility of 

false-positive errors, the relevant research community gener-

ally requires one or two successful convincing independent 

replications of a new effect (with no convincing replication 

failures) before they will agree that the effect probably exists 

in the population. 

2.14 Implications of a Low-Enough p-Value 

If a researcher computes a p-value for an effect, and if the p-

value is only slightly below the critical p-value for a particular 

journal, then this isn’t strong evidence that the effect exists in 

the population because there is a real chance that the null hy-

pothesis is true (or is effectively true) and the result is a false-

positive result. However, if the p-value is less than the jour-

nal’s critical p-value, then this is judged to be enough weight 

of evidence to merit consideration for publication, with ac-

ceptance for publication contingent on successfully passing 

all the journal’s other gateways. 

If a paper successfully passes all the gateways, then it is 

sensible to publish the paper even though the result may be a 

false-positive error. This is because publication informs other 

researchers in the field about the putative effect so that (if they 

find it interesting) they can replicate it and study it further, 

thereby increasing our understanding of the effect. And if the 

result is a false-positive error, and if it is interesting then, as 

noted, the error will be quickly identified through failed rep-

lication attempts. 

2.15 What About the “Lost” Effects? 

A possible serious problem with the critical-p-value gateway 

concerns the “lost” effects—the false-negative errors that are 

true effects in the studied population but were rejected for 

publication by the gateway. If a journal uses the gateway, is it 

inappropriately hiding these real effects from the research 

community? 

No, not in the important sense. This is because a re-

searcher who performs a research study that yields a weak re-

sult almost always has a large vested interest in the effect, 

typically larger than anyone else. So, this researcher has a 

strong desire to see his or her research results published. And 

the researcher has both the knowledge and (usually) the 

means to address the problem of the weak evidence.  

So, if a researcher performs a research study and obtains 

a key p-value that is greater than the critical values used by 

the journals in the relevant field, and if the researcher contin-

ues to believe in the existence and the importance of the stud-

ied effect, then the researcher should perform a new research 

study of the effect with a more powerful research design to 

see if they can find convincing publishable evidence of the 

existence of the effect. If they can find good evidence (e.g., a 

low-enough p-value under a sensible research design), then a 

journal will be pleased to consider publishing a research paper 

describing the result. 

The preceding ideas are closely related to the so-called 

“file-drawer problem” in which negative results in scientific 

research aren’t published. Researchers often omit writing pa-

pers about negative results because there is generally no pay-

off for writing such a paper. However, if a paper reporting a 

negative result is written, then generally the paper must be 

relegated to a (computer or physical) file drawer, never to be 

published (because journals generally don’t publish negative 

results). Some people think that negative results in file draw-

ers is a bad thing. 

Of course, if a negative result in a file drawer is a true 

negative result, then it shouldn’t be published because (with 

rare exceptions) nobody is interested in a true negative result 
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(because it doesn’t tell us anything beyond the status quo). In 

contrast, if a negative result in a file drawer is a false-negative 

result and thus the effect actually exists in the population, then 

we can hope that the researcher maintains faith in the effect 

and repeats his or her research with a more powerful research 

design in order to obtain a publishable positive result. This 

hope is sensible because thoughtful people generally don’t 

give up immediately on an idea when they think they are right. 

2.16 Negative Results as Failures to Replicate 

A noteworthy exception to the idea that negative results aren’t 

interesting occurs when a negative result reflects a failure to 

replicate a published positive result. If the research obtaining 

a failure to replicate an earlier result was carefully performed, 

then the negative result somewhat calls the positive result into 

question, suggesting that the positive result may reflect a 

false-positive error. However, although such negative results 

are important, they generally still aren’t published because 

that generally isn’t necessary. This is because word about 

convincing negative results gets around the relevant research 

community informally (in seminars, conventions, and social 

media) to the point where the positive result is properly called 

into question. This happens efficiently because scientists are 

highly interested in knowing the truth (unvarnished by false-

positive results) about the entities in the populations that they 

study.  

2.17 The Size and Importance of a Detected Effect 

If we use a p-value in a research study to help us to discover 

the existence of an effect, and if the p-value is below the crit-

ical p-value, and if all the other important gateways are also 

successfully passed, then this tells us that the results of the 

study provide good evidence that the studied effect exists (i.e., 

good evidence that the effect is real) in the studied population. 

However, as many authors have pointed out, a low p-value 

tells us nothing about either the size or the importance of the 

putative effect. 

Of course, the size of a studied effect is highly important 

in scientific research. Therefore, once we have confirmed that 

an effect is likely real, we must consider its size because the 

effect won’t be useful (at least in a practical sense) unless it is 

big enough. Fortunately, we can use various statistical 

measures to tell us the estimated effect size, such as the “ef-

fect size”, the correlation coefficient, the contingency coeffi-

cient, and so on, as appropriate. (For technical reasons, effect 

size estimates for newly discovered effects are often some-

what [e.g., 20%] too high, and lower estimated effect sizes 

will be obtained when the effect is properly replicated. How-

ever, this isn’t a problem if we are aware of the phenomenon.) 

Similarly, the importance of an effect is obviously im-

portant. We decide whether a detected effect is scientifically 

or practically important by carefully considering its scientific 

or practical ramifications. Consideration of the importance of 

a newly discovered effect is the scientific bottom line of a re-

search study, so experienced researchers consider the im-

portance of a new effect in careful detail. 

Clearly, both the size and the importance of an effect are 

of crucial importance in scientific research, so both must be 

carefully considered. However, there is generally no point in 

seriously considering either the size or the importance of an 

effect until we have first confirmed (e.g., with a relevant p-

value) that the effect is (likely) real in the population. 

2.18 Another Parallel View 

The preceding discussion summarizes a general common 

view of the use of a critical p-value as a gateway to publica-

tion of a research paper in a scientific journal. Ioannidis 

(2019, 2019a) gives a parallel general view in support of the 

usefulness of the concept of statistical significance. 

3. The Two Problematic Promises 

With the preceding ideas in mind, let us now consider the two 

attractive outcomes promised in the TAS editorial if we aban-

don using a critical p-value (and if we abandon other equiva-

lent approaches). As noted, the editorial refers to maintaining 

“the integrity of scientific publishing and research dissemina-

tion” (p. 2). Therefore, the promises should apply to the im-

portant case when a journal uses a critical p-value as a gate-

way to publication. 

One promise in the editorial implies that if journals aban-

don using a critical-p-value gateway, then researchers will 

make fewer false-positive errors (“fewer false alarms”, p. 1) 

and thus there will be fewer false-positive errors published in 

the scientific research literature. If this is true, it is an excel-

lent reason to abandon critical p-values because (a) it is false-

positive errors in the research literature that cause the “repli-

cation crisis” in scientific research and (b) false-positive er-

rors are costly because they can lead to a substantial waste of 

resources as other researchers try to replicate or use the false 

finding. So, reducing the rate of false-positive errors in the 

scientific research literature is a very desirable goal. 

Unfortunately, abandoning the critical-p-value gateway to 

publication won’t lead to fewer published false-positive errors 

(in percentage terms), but will lead to more. This is because 

if the critical-p-value gateway is removed, then many less-

conclusive research results will be submitted to journals for 

consideration for publication. And (due to the absence of the 

gateway) some of the less-conclusive results will be accepted 

for publication. A few of the papers with weak results will 

acknowledge that their results are essentially negative results. 

But most of the papers with weak results will present their 

results as positive results because positive results are more in-

teresting, suggesting how we might predict or control the val-

ues of the response variable. 

The rate of false-positive errors in the accepted less-con-

clusive “positive” results will be somewhat high because 

false-positive errors occur surprisingly often among the posi-

tive results in scientific research, and more so among the weak 

positive results. Therefore, if we abandon using a critical-p-

value gateway to publication, then the body of new published 

scientific research papers (the repository of front-line scien-

tific information) will unfortunately contain more false-posi-

tive errors (false alarms), not fewer. 

I discuss the determinants of the rate of false-positive er-

rors in a field of scientific research in the 2018 paper (app. 

B.10). Fricker, Burke, Han, and Woodall (2019) describe the 

apparent increase in the rate of false-positive errors in the 
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journal Basic and Applied Social Psychology after the editors 

banned p-values and related ideas from the journal. 

The other attractive promise in the editorial implies that if 

journals abandon using a critical-p-value gateway, then “re-

searchers will [often] see their results more easily replicated” 

(p. 1). But if we abandon using a critical-p-value gateway, 

then more false-positive results will be published in the sci-

entific research literature, as noted above. The rate of success-

ful replications of the false-positive results will be zero (if we 

sensibly exclude any false-positive replications). Therefore, if 

journals abandon using a critical-p-value gateway, then re-

searchers won’t see their positive results more easily repli-

cated. Instead, in percentage (success rate) terms, it will be 

more difficult to replicate positive scientific research results. 

This will make the “replication crisis” worse. 

So, the two promises in the editorial appear to be unattain-

able, and we will obtain the opposite (less desirable) out-

comes if we abandon using a critical-p-value gateway to pub-

lication. This raises two questions: 

1. If we abandon using a critical-p-value gateway, what does 

this abandonment give us to justify the increase in false-

positive errors and the decrease in successful replications 

in the scientific literature? 

2. Does the central goal of objectivity in science demand a 

decisive impartial settable general gateway like the critical 

p-value to tell us whether a research signal is far enough 

above the noise to qualify for consideration for publica-

tion? 
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Appendix A: Some Ideas about the Null Hypothesis 

Many authors (possibly beginning with Berkson, 1938, p. 

527) have sensibly noted that the null hypothesis may never 

be exactly true in the real world in any research situation. 

Some authors go further and claim definitively that the null 

hypothesis is never exactly true in the real world in research. 

Interestingly, although we can sometimes empirically 

prove (beyond a reasonable doubt) that a given null hypothe-

sis is false, it appears to be impossible to ever empirically 

prove that a given null hypothesis is exactly true. This is be-

cause if we look for some effect and fail to find it, this doesn’t 

imply that the effect doesn’t exist, for it may exist but be too 

small to be detected by our current measuring instruments. So 

(unless we find a way to make our measuring instruments per-

fect), we can never empirically prove that a null hypothesis is 

exactly true. 

Also, it appears to be impossible to empirically prove that 

the null hypothesis is never exactly true. This is because we 

can’t examine every null hypothesis in the universe and some-

how confirm that they are all false. 

So even though a null hypothesis may or may not ever be 

exactly true, we (apparently) can’t know whether this is so ei-

ther in general or in any specific research situation. Of course, 

we do know that the null hypothesis is often “in effect” true 

in scientific research. And for certain relationships between 

variables there is (so far) no detectable relationship between 

the variables using our current best measuring methods and 

best statistical methods for detecting relationships. But in al-

most all such cases, a very weak relationship might still be 

present, and thus the null hypothesis may not be exactly true 

in the population. 

Some authors conclude that since the null hypothesis may 

never be exactly true, therefore statistical hypothesis testing 

is illogical. However, whether the null hypothesis is ever ex-

actly true is irrelevant for standard statistical hypothesis test-

ing. This is because in standard hypothesis testing, we are try-

ing to show that a null hypothesis is clearly false. In the rele-

vant sense for this discussion, showing that a studied null hy-

pothesis is false is a logically independent issue from showing 

whether a null hypothesis is ever true. In other words, in the 

case of showing that a null hypothesis is sometimes clearly 

false, it doesn’t matter whether the null hypothesis is ever ex-

actly true. If we can empirically show that a studied null hy-

pothesis is clearly false, then (if the associated effect has been 

chosen carefully) this can lead to a substantial payoff—the 

knowledge of a new relationship between variables that we 

can use for reliable prediction or control. 

In brief, it doesn’t matter whether the null hypothesis is 

ever exactly true. 

On a similar technical issue, some authors correctly note 

that the null value of the parameter whose value is tested by a 

statistical test is generally assumed to have “zero systematic 

error”. These authors think it is implausible for a parameter to 

have zero systematic error, and this leads them to think that 

the null hypothesis is “implausible” and “uninteresting” 

(McShane, Gal, Gelman, Robert, and Tackett 2019, p. 236). 

Of course, it is the true value of the relevant population 

parameter (not the value of the estimate of the population pa-

rameter) that is assumed to have zero systematic error. Under 

the standard frequentist approach to statistics, all population 

parameters (either of model equations or of the population di-

rectly) are assumed to have (unknown but estimable) fixed 

true values (possibly the null value) with zero systematic er-

ror. (In a few cases, the true value of a population parameter 

might vary “slowly” over time, but we generally view the 

value as being fixed in any analysis and fixed in most series 

of analyses across time.) So, under the frequentist approach 

to statistics, it is the norm, and thus isn’t implausible, for a 

(fixed) population parameter to have zero systematic error. 

An estimate of the value of a parameter will have associated 

estimable error, but the unknown true value of the parameter 

in the population is sensibly viewed as being fixed with no 

error. 

Appendix B: The Logic of the p-Value 

Mathematically, the p-value is the probability of obtaining 

a result as “extreme” or more extreme as obtained in the cur-

rent research situation given that the null hypothesis is true 

(and given that certain sensible assumptions are properly sat-

isfied). The extent to which a result is “extreme” is measured 

in terms of how much the result deviates from the ideal result 

that we would get if the null hypothesis is or were true. We 

generally compute the p-value probability in terms of the 
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estimated value of a parameter of an appropriate model equa-

tion. We compute the probability of the parameter estimate 

deviating as far as it has or farther from its null value if the 

null hypothesis is or were true. 

For example, consider the relationship between continu-

ous variables 𝑥 and 𝑦 in some population of entities. And con-

sider a simple linear model equation for the relationship: 

𝑦 = 𝑏0 + 𝑏1𝑥. 
If there is no relationship between 𝑥 and 𝑦, then the equation 

implies that the true (but unknown) value of parameter 𝑏1 in 

the population will be zero, which is the null value for the 

parameter in this example. And if there is a relationship be-

tween the two variables, then the true value of 𝑏1 will usually 

be different from zero in the population. So, we can generally 

determine whether a relationship exists by determining 

whether 𝑏1, as estimated from relevant research data, is dif-

ferent from zero. 

Statisticians have invented three main methods to estimate 

the values of parameters of model equations from relevant re-

search data: the least-squares method, the maximum-likeli-

hood method, and the Bayesian methods. Each of these meth-

ods is based on different theoretical principles, but in general, 

and when applicable, they all give the same or highly similar 

estimates of the values of the parameters for any given non-

pathological set of data and any appropriate model equation. 

These ideas are made more complicated by the fact that 

there will always be noise in the data. So, even if there is no 

relationship whatever between 𝑥 and 𝑦, the estimated value of 

𝑏1 from relevant data will almost never be exactly equal to 

zero. So, we must determine whether the estimated value is 

far enough (i.e., “significantly”) away from zero to enable us 

to reject the null hypothesis. 

The simplest way to do this is to simply look at the esti-

mated numeric value of 𝑏1 and decide whether it is far enough 

from zero for us to believe that a relationship exists. However, 

this approach fails to take account of all the available and use-

ful information because it ignores the available information 

about the estimated standard error of 𝑏1. So, this isn’t a sensi-

ble approach. 

A sensible simple approach is to measure the distance of 

𝑏1 from zero as a multiple of its estimated standard error. Of 

course, this is the familiar t-statistic, which is used sometimes 

in the physical sciences, sometimes with a critical value of 

2.0. (In rare cases when the standard error is known, and thus 

needn’t be estimated, researchers sensibly use the closely re-

lated Z-statistic.)  

Thus, in the example, if the estimate of 𝑏1 is more than 2.0 

(estimated) standard errors away from zero, physicists or 

chemists will say that this satisfies the 2𝜎 criterion where 𝜎 

stands for the estimated standard error, and therefore the ef-

fect is “significant”, and therefore it likely exists in the popu-

lation. (To be on the safe side, some research studies in the 

physical sciences use a higher critical t-value, sometimes as 

high as 5𝜎, which greatly reduces the chance of a false-posi-

tive error, but also greatly increases the cost of the research.) 

Of course, regardless of where we set the critical t-value, 

false-positive errors are always possible.  

It is easy to show that in standard situations if the relevant 

sample size is greater than 30 or so, a critical t-value of 2.0 is 

roughly equivalent to a critical p-value of 0.05 in deciding 

whether a research result is positive or negative. 

A technical problem with the t-statistic is that its distribu-

tion varies slightly depending on its “degrees of freedom”, 

which depends on the sample size and other aspects of the 

research. This means that the value of the t-statistic isn’t 

strictly comparable from one research situation to the next. In 

a rough-and-ready sense, this fact is ignorable in many re-

search situations. However, in science it is sensible to be as 

strictly correct as sensibly possible. Therefore, it is sensible 

to compute the fraction of the time that the t-statistic will de-

viate as far as it does in the present case or farther from the 

null value if the null hypothesis is or were true. This compu-

tation is easy to do, and it can take proper account of the de-

grees of freedom and thus is (when the underlying assump-

tions are adequately satisfied) strictly comparable from one 

research situation to the next.  

Of course, the fraction of the time that the t-statistic will 

deviate as far as it does or farther from the null value if the 

null hypothesis is or were true is simply the relevant p-value. 

Thus, the p-value is simply a measure of the deviation of the 

parameter estimate from the null value on a scale that is mean-

ingfully comparable from one research situation to the next. 

(In cases where the t-statistic is appropriate, the p-value is a 

mathematically well-understood monotonic decreasing deter-

ministic function of both [a] the absolute value of the t-statis-

tic, and [b] the relevant degrees of freedom.) So, a critical 

value on the p-value scale is sensibly comparable among all 

research situations when the underlying assumptions of the p-

value are adequately satisfied. (The assumptions are often ad-

equately satisfied in carefully planned scientific research.) 

The idea of testing whether a parameter is significantly 

different from its null value readily generalizes from the pre-

ceding simple example to other types of model equations and 

other types of relationships between variables. These ideas are 

a sensible, simple, and widely accepted approach for detect-

ing relationships between variables and other effects in re-

search data. The ideas are imperfect because they make false-

positive and false-negative errors, but (it appears) nobody has 

found a better approach. 

It is worth repeating that a low p-value supports the idea 

that a relationship (or other studied effect) exists only if there 

is no reasonable alternative explanation for the low p-value, 

where the set of reasonable alternative explanations is open-

ended. That is, any alternative explanation is viable if it is 

“reasonable”. The relevant scientific research community de-

cides what is “reasonable”. 

Appendix O of the 2018 paper discusses whether the pa-

rameters of a model equation of a relationship between varia-

bles are “real”. 
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Appendix C: The Rate of Publication of False- 
Positive Results in Scientific Research 

The estimate earlier in this paper that approximately 25 per-

cent of the published research results in a field will be false-

positive results is based on the following assumptions:  

• the percentage of research hypotheses that are true in the 

field is 20 percent  

• the average critical p-value used in research in the field is 

0.05  

• the average power of statistical tests used in the field is 0.6 

• the underlying assumptions of the statistical tests used in 

the field are always adequately satisfied  

• all positive results in the field are published, and 

• researcher errors in the field are negligible.  

The estimate of approximately 25 percent is taken from figure 

B.1, which shows the percentage of false-positive errors as a 

function of the percentage of research hypotheses that are true 

in a field under the second through last assumptions above. 

 

Figure B.1. The percentage of positive results in a field 

of scientific research as a function of the percentage of 

studied research hypotheses that are true in the field 

under the assumptions discussed in the text. 

If the average critical p-value used in a field is less than 0.05, 

then the curving blue line on figure B.1will bulge proportion-

ately closer toward the lower left corner of the graph, decreas-

ing the rate of false-positive results. If the average power used 

in a field is less than 0.6, then the curving blue line will move 

proportionately further away from the lower left corner, in-

creasing the rate of false-positive results. The R program (text 

file) that generates the graph explains the simple mathematics 

behind the graph (Macnaughton 2019). You needn’t have or 

understand the R software to understand the logic in the pro-

gram. It is easy to modify the program to plot the graph under 

different scenarios. 

In real life, the above list of assumptions won’t be satisfied 

for a branch of science. And in real life we can’t know the 

value of the variable on the horizontal axis for a branch of 

science. We can’t know this value because, as noted, we gen-

erally (and arguably sensibly) don’t track negative results in 

scientific research. Similarly, in real life we can’t know the 

average power of the statistical tests in a field of scientific 

research, though it seems clear in some cases with small 

sample sizes that the average power is less than 0.6, which 

increases the false-positive publication rate.  

Although in real life we can’t use the graph (or similar 

graphs), each branch of science will still have its own point 

somewhere below a downward-sloping diagonal straight line 

on the graph [running from coordinates (0,100) down to 

(100,0)]. Knowing that each branch of science has its own 

point somewhere on the graph helps us to understand the oc-

currence of false-positive errors in scientific research. 

Appendix D: The Initiative to Preregister Scientific 
Research Studies 

There is presently an initiative in some branches of scientific 

research to “preregister” scientific research studies. Under 

this initiative, a copy of the plan for a research study is sub-

mitted to a central repository (i.e., the plan is “registered”) 

before the research is begun (or perhaps shortly after the re-

search is begun, to allow for last-minute changes in the re-

search design). This approach may include peer review of the 

research design at the time of registration (Center for Open 

Science, 2019) or it may only include registration with no re-

view (Nosek, Ebersole, DeHaven, and Mellor 2018). If re-

search studies are registered when they begin, this enables ex-

ternal auditing of the research, which can identify and dis-

courage some types of researcher errors (in particular, unwar-

ranted deviations from the research plan in search of positive 

results, which tends to lead to false-positive errors). Preregis-

tration also enables tracking of negative results and has the 

important benefit of encouraging researchers to better plan 

their research studies. 

The initiative for preregistration comes mainly from the 

so-called “replication crisis” that exists in scientific re-

search—the fact that replication attempts fail in a substantial 

number of cases in some areas of research. These failures to 

replicate earlier results occur for two reasons. First, as dis-

cussed in appendix C, there will be a substantial number of 

false-positive errors published in journals in a field of scien-

tific research due to the intentional leniency of statistical tests 

coupled with random chance. (As discussed in sections 2.5–

2.8, the leniency reduces the rate of false-negative errors 

while maintaining sensible research costs.) Let us call the 

false-positive errors due to the leniency of statistical tests and 

random chance “natural” false-positive errors. Second, some 

of the false-positive errors in a field will be due to various 

kinds of researcher errors.  

As discussed in appendix C, it is difficult to determine the 

rate of natural false-positive errors in scientific research. 

Likewise, it is presumably difficult (impossible?) to empiri-

cally separate the rates of natural false-positive errors from 

false-positive errors due to researcher errors.  

It is noteworthy that requiring research preregistration will 

help to reduce the rate of false-positive errors due to re-

searcher errors. But preregistration will have no effect on the 

natural false-positive errors. The researcher errors will only 

be a certain percentage (perhaps small) of the overall set of 

false-positive errors that occur in scientific research. There-

fore, it is unclear whether the initiative to require preregistra-

tion of research studies will provide enough benefit to justify 

its cost.  
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Also, there is a sensible belief that researchers operate on 

their honor because they are professionals, though there are 

exceptions. So, there is a belief that an auditing system is in-

consistent with the principle of honor in science. 

Also, due to the investigative nature of science, even with-

out the principle of honor, experienced researchers scrupu-

lously strive to avoid errors. This is because, as noted, expe-

rienced researchers know that if their research is sufficiently 

important, then critical errors in the research will always be 

exposed in later replicating research, and exposure of such er-

rors tends to diminish a researcher’s reputation. So farsighted 

researchers, who seek the truth (as opposed to merely a posi-

tive result), do their best to eliminate the possibility of false-

positive errors. 

Instead of having a policing function through preregistra-

tion, it might be more sensible to attack the problem of re-

searcher errors at its root cause. The cause lies in weak train-

ing which leads to researchers’ incomplete knowledge of the 

damaging ramifications of researcher errors both to science 

and to a researcher’s career. Thus, it might be better to spend 

the resources needed for the policing function on better statis-

tical and data-science education. This would help researchers 

to understand that knowing the rules for proper scientific re-

search and scrupulously following them is in their best inter-

est. 

Despite the preceding points, it is still conceivable that 

mandatory research preregistration would improve scientific 

research. As with any scientific question, the usefulness of 

preregistration must be determined through appropriate em-

pirical research. If preregistration can demonstrably improve 

the quality of science on a sensible measure of quality, and if 

the improvement is cost-efficient, then clearly preregistration 

should be required.  

The proponents of preregistration are diligence scientists, 

so empirically demonstrating the value of preregistration is 

very much their goal. However, in view of the difficulty of 

separating natural false-positive errors from researcher-in-

duced false-positive errors, they may find this is a difficult 

task. However, if they are correct about the usefulness of pre-

registration, they will likely find a way. 

Appendix E: Campbell and Gustafson (2019) 
Implications 

Scientific researchers have a strong incentive to increase the 

count (quantity) of their published papers because we often 

use the count to determine a researcher’s prestige, promo-

tions, and salary. Of course, publication quality is scientifi-

cally more important than publication quantity. But quality is 

hard to measure. As noted in section 2.10, quality is hard to 

measure because it is generally impossible to reliably directly 

measure the quality of an individual research paper until sev-

eral years after the paper has been published (when the rami-

fications and the importance of the paper can be determined 

through citation research).  

In contrast, quantity is easy to measure (by merely asking 

a researcher for his or her publication list, which most re-

searchers sensibly maintain). And a researcher’s publication 

quantity somewhat reflects his or her research quality (in a 

cumulative sense) because each published paper has achieved 

at least the reasonably high level of quality required for pub-

lication. 

So, publication quantity is often somewhat sensibly used 

as a surrogate for quality in evaluating researchers for pres-

tige, promotions, and salaries. For example, it is easy to im-

agine a faculty salary committee at a research-oriented uni-

versity noting that associate professor A published ten ac-

ceptable though not outstanding papers over the last two 

years, but associate professor B published only one acceptable 

though not outstanding paper, and awarding raises in salary 

accordingly. The people who produce more results get greater 

rewards. 

Thus, to maximize prestige, promotions, and salary, it is 

sensible for researchers to conduct their research in a way that 

will maximize their publication count. Campbell and Gus-

tafson (2019) show (through a sensible mathematical model 

and under reasonable assumptions) that, to maximize his or 

her publication count, a researcher should perform many re-

search studies of long-shot novel effects using low statistical 

power for each study. The reason for performing long-shot 

studies is that positive results in such studies are intriguing 

and are therefore generally likely to be accepted for publica-

tion if all the relevant gateways are passed. The reason for 

using low power is to reduce resource requirements for each 

study and to thereby enable the researcher to increase the 

number of studies that he or she can perform under the re-

source budget, which will lead to more positive results. 

Unfortunately, although this “scattershot” approach tends 

to generate many publications for a researcher, it also leads 

(under the Campbell and Gustafson model) to a relatively 

large number of false-positive errors in the researcher’s re-

search. Campbell and Gustafson show this fact in the small 

light-blue and green boxes in lower-left large square in their 

information-rich figure 1. So, the scattershot approach is good 

for researchers in the short term, but bad for science in the 

sense of yielding a substantial number of published false-pos-

itive errors. Of course, in the long term, the scattershot ap-

proach is generally bad for a researcher because, as noted, if 

the research is sufficiently important, then the false-positive 

errors will be exposed in replication studies, which will tend 

to diminish the researcher’s reputation. 

Also, the scattershot approach isn’t sensible for a re-

searcher who has a “cherished” research hypothesis that he or 

she wishes to demonstrate is true and wishes to test well. In 

that case, the researcher should design the research to have a 

high-power test to increase the chance that the research will 

obtain a positive result (assuming, of course, that the studied 

effect exists in enough strength in the population). 

Whether a researcher should follow a cherished-hypothe-

sis approach or a scattershot approach in his or her research 

depends on the relative quality of the cherished and scatter-

shot research hypotheses that the researcher can generate. 

(Perhaps this matter is irrelevant for some or many research-

ers because they can only generate one type of research hy-

pothesis, which is a hypothesis that seems possibly correct to 

them, so is worth studying.) It also depends on whether other 

researchers will likely try (and therefore fail) to replicate the 

researcher’s false-positive results (under either approach), 

and it depends on the cumulative cost of these failures to the 

researcher’s reputation.  
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If a researcher can generate cherished research hypotheses 

that are correct a “good percentage” of the time, then the re-

searcher should use the cherished-hypothesis approach, which 

will provide a good percentage of true positive results and will 

tend to minimize the absolute number of false-positive errors 

that the researcher’s research makes. The numeric value of 

“good percentage” could be modeled in theory, but the math-

ematical model would almost certainly be much too slippery 

to reliably estimate the required minimum percentage. So, we 

must apparently fall back on intuitive sensibility, which is dif-

ficult here, but appears to be all we have. Of course, ethical 

considerations point toward the cherished-hypothesis ap-

proach. 

Concerned about the high rate of false-positive errors un-

der the scattershot approach, Campbell and Gustafson sensi-

bly consider in section 4 of their article the implications of 

journals imposing a statistical power requirement on research 

studies to reduce the rate of false-positive errors. They show 

that, under their model, the number of false-positive results 

under the scattershot research approach could be reduced by 

requiring that research studies have, say, at least 50 percent a 

priori power for the key statistical test for the expected effect. 

By “a priori power” they mean power that was computed be-

fore the research was begun based on assumptions about the 

likely effect size and its likely standard error (as opposed to 

rarely useful “retrospective power” that is computed based on 

the effect size and its standard error that are actually estimated 

in the research). 

However, Campbell and Gustafson show in their table 5 

that (under their model) although the power requirement will 

decrease the rate of false-positive errors, this approach will 

also decrease the rate of publication of “breakthrough” dis-

coveries in scientific research. Also, as Campbell and Gus-

tafson note, an a priori power requirement would be less reli-

able because it is difficult to compute a priori statistical power 

reliably (because one must make usually hard-to-justify but 

easy-to-game assumptions about the likely effect size and the 

likely standard error). 

As Campbell and Gustafson also observe, although statis-

ticians and researchers have discussed statistical power many 

times over the years, the concept has never caught on in the 

sense of being enforced in practical scientific research. That 

is, although we often see journals with a critical-p-value gate-

way, few journals (if any) have a statistical-power gateway. 

This may be because the concept of the absolute power of a 

statistical test is a chimera because it can’t be measured ahead 

of time unless we make some speculative assumptions, which 

give the exercise an air of arbitrariness, which science gener-

ally avoids. 

Although measuring absolute power generally isn’t relia-

ble, it is important to note that the concept of relative power 

of two statistical tests of the same research hypothesis under 

two equally costly research designs is very useful when a re-

searcher is designing a scientific research study. This is be-

cause (if other things are equal) the design with the greater 

relative power is preferred. The greater power makes it more 

likely that the research will find the effect it is looking for (if 

the effect exists in the population). 

Instead of requiring that statistical tests in research studies 

have a particular power, a sensible similar gateway would be 

to require that sample sizes in research be “sufficiently” large, 

as indirectly suggested by Campbell and Gustafson. This is 

sensible because (unlike power) sample sizes are directly 

measurable. For example, for a research study that compares 

different groups, a journal might require that at least 30 inde-

pendent measurements of the response variable be made for 

each group. Of course, research studies are free to use many 

more measurements of the response variable per group, such 

as 100, 500, or more (to achieve the required statistical power 

in cases when the effect is likely to be weak). A minimum 

permissible sample size of 30 measurements per group would 

ensure that research projects comparing groups aren’t ridicu-

lously underpowered. 

Due to the many different possible research designs, spec-

ifying a general and fair sample-size gateway for publication 

in a journal might be difficult, but it would help to ensure that 

statistical tests have enough power. 

Alternatively, as noted earlier, it is possible that the cur-

rent standard system for evaluating the weight of evidence 

with a critical p-value, but with no power or sample size re-

quirement, is roughly optimal, possibly having achieved near-

optimality through a form of consensus in journals over the 

more than 90 years and many millions of times that p-values 

have been used. If so, this would further attest to the percep-

tiveness of Sir Ronald Aylmer Fisher, who recommended the 

informal use of a critical p-value of 0.05 more than 90 years 

ago (1925, chap. IV, sec. 20).  

It is instructive to note that Fisher later softened his view, 

saying that 

no scientific worker has a fixed level of significance at 

which from year to year, and in all circumstances, he 

rejects [null] hypotheses; he rather gives his mind to 

each particular case in the light of his evidence and his 

ideas (1973, p. 45).  

This softening of Fisher’s ideas may have been a reaction to 

criticism about the apparent arbitrariness of 0.05. However, 

Fisher was discussing the use of a critical p-value by an indi-

vidual scientific worker to evaluate his or her results, and he 

wasn’t discussing the use of a critical p-value as a sensible 

gateway to publication in a scientific journal where the use of 

a fixed critical p-value makes more sense. 

As Campbell and Gustafson suggest in their “main recom-

mendation” (2019, p. 369), further mathematical modeling of 

the scientific publication process may help us to determine the 

optimal approach, and (they sensibly suggest) such modeling 

is advisable before we adopt any policy changes about statis-

tical hypothesis testing. (It would be odd if statisticians, who 

are arguably the world’s best general modelers, would omit 

the use of models in deciding to reject the use of the concept 

of statistical significance.) In such modeling, a sensible goal 

is to determine the approach to scientific publishing that max-

imizes the long-term overall payoff of scientific research in a 

field—a property that, sadly, is difficult or impossible to reli-

ably directly measure, which makes it hard to maximize. This 

may imply that we must again fall back on intuitive sensibility 

in the research community. However, due to the wisdom of 

the crowd, it seems a reasonable bet that intuitive sensibility 

over millions of p-values and thousands of editors over the 

years is reliable. 
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