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Abstract 

A scientific journal that publishes data-based research papers can use a threshold p-value as a “gateway” to 

publication of a paper in the journal. A research paper must successfully pass through the gateway to be 

selected for consideration for publication. The gateway helps the journal to maximize the scientific and social 

benefits of the papers it publishes. The journal does this by choosing a threshold p-value that roughly mini-

mizes the long-run sum of the costs of the false-positive and false-negative errors that the gateway makes in 

selecting papers to consider. A proof is given that the optimal threshold p-value for a scientific journal exists 

and is unique to the journal. 
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The p-value has been discussed in a broad range of uses. How-

ever, we consider the p-value in a specific but important sin-

gle application—in its role in a gateway to publication for an 

empirical-research paper in a scientific journal. We discuss 

how a journal editor can use a “threshold” p-value gateway to 

help to maximize the scientific and social benefits the journal 

provides.  

The p-value is a key component of the topic of statistical 

inference, which has an intriguing history, as summarized by 

Kennedy-Shaffer (2019). We consider a modern view of sta-

tistical inference in the journal-publication process, using 

ideas that have been used by reputable journals since the 

1950s. The view is useful because it provides a sensible gen-

eral way of interpreting scientific research. 

1. Relationships Between Variables 

We focus on scientific research studies that systematically 

collect and analyze data, which we refer to as “empirical-re-

search” studies. A large proportion of scientific research stud-

ies are empirical-research studies. 

As many statisticians and data scientists will agree, it is 

useful and easy to view most empirical-research studies 

through a single unifying point of view. That is, we view a 

research study as studying one or more relationships between 

variables in a population of entities. For example, medical re-

searchers often study the relationship between variables re-

flecting the dose of a drug given to medical patients and the 

subsequent severity of a disease in the patients in a specified 

population of patients. 

Science and society are interested in relationships between 

variables because if a researcher finds a new real relationship 

between variables in a population of entities, and if the varia-

bles were sensibly chosen, then this information is often 

highly useful. This is because we can use the relationship to 

reliably predict or sometimes control the values of one of the 

variables in new entities from the population. We can do this 

by measuring or controlling the values of the other variable(s) 

in the entities and then using our knowledge of the relation-

ship to accomplish the prediction or control. 

Most scientific studies of relationships between variables 

(or subunits of more complicated studies) have a single “re-

sponse” variable (e.g., disease severity) and they have one or 

more “predictor” variables (e.g., drug dose, patient gender, 

patient age). The response variable is the variable that we 

would like to learn how to predict or control. Predictor varia-

bles are the variables that we use to enable us (we hope) to 

predict or control the values of the response variable.  

Response and predictor variables are sometimes called 

“dependent” and “independent” variables respectively. How-

ever, those names are less appropriate because either the de-

pendency or the independency may not be present.  

2. Does a Relationship Exist? 

A key initial question in the scientific study of any relation-

ship between variables is whether the relationship actually ex-

ists in the population or whether the relationship is merely a 

figment of the researcher’s imagination. This question is im-

portant because it sometimes turns out in modern science that 

a postulated relationship between variables doesn’t exist (or 

at least it doesn’t detectably exist) in the population. This hap-

pens because, though a researcher may have a brilliant idea 

about a new relationship between variables, sometimes the 

idea is, unfortunately, wrong. And the postulated relationship 

between the variables doesn’t exist. For example, medical re-

searchers sometimes find that there is no good evidence of a 

relationship in medical patients between the dose of what the 

researchers thought was a promising drug and the severity of 

the disease that the drug was intended to treat. 

A researcher determines whether there is good evidence 

of a relationship between variables by analyzing appropriate 
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research data about the entities in the population. That is, the 

researcher selects a sample of entities from the population and 

then they measure the value of each of the variables of interest 

in each entity in the sample. In “experimental” research stud-

ies, the researcher also manipulates the values of one or more 

of the predictor variables in the entities. 

The researcher collects all the measured values of the 

measured variables in a data table and then they analyze the 

data. Then they make careful inferences from the analysis of 

the sample data about the existence and about the apparent 

form of the studied relationship between the variables in the 

entities in the underlying population. That is, they make care-

ful generalizations from the sample to the population.  

The following sections explain how journals and research-

ers perform the first step of generalizing from sample data—

how they decide whether the studied relationship between 

variables (likely) exists in the population. This step comes 

first because there is no practical point in considering other 

aspects (i.e., the form) of a relationship between variables un-

less we are first confident that the relationship between the 

variables likely exists. If we don’t have good evidence that a 

relationship exists, then we may be studying not a relation-

ship, but studying mere noise in the data, perhaps mistakenly 

thinking that the noise reflects a relationship. 

If we find good evidence that a potentially useful relation-

ship between variables exists, then our research paper report-

ing the study will usually discuss various aspects of the form 

of the putative relationship because readers will want to know 

about the form. However, apart from a few references to show 

linkages of ideas and a high-level summary in appendix A, 

the aspects of the form of a relationship between variables are 

beyond the scope of this paper. Instead, we focus on the vital 

and difficult initial question of empirical research of whether 

a relationship between certain variables in a population likely 

exists. 

Appendix H discusses how, formally, a research study 

must use “random sampling” of entities from the population 

to make proper generalizations from the sample to the popu-

lation. The appendix also explains how researchers often sen-

sibly bypass this requirement to reduce research costs at the 

expense of an acceptable loss in accuracy and precision in the 

subsequent prediction or control. 

3. Positive Results, Negative Results, and the p-
Value 

A positive result occurs in an empirical-research study if a 

proper analysis of the sample data finds good evidence that 

the studied relationship between variables exists in the popu-

lation. For example, a medical research study may find good 

evidence of a relationship between a drug and a disease in a 

population of medical patients.  

In contrast, a negative result occurs if a proper analysis of 

the data doesn’t find good evidence that the relationship ex-

ists. 

So, how can we tell whether we have good evidence in a 

research study that a relationship exists between certain vari-

ables? That is, how can we perform a proper analysis of the 

sample data in a data table to determine whether we have a 

positive result? 

A standard way to address this question is to use a com-

puter to apply a measure of the weight of the evidence to the 

data. Statisticians have invented more than ten different 

measures of the weight of evidence that a relationship exists 

between variables, such as the p-value, confidence interval, 

likelihood ratio, Bayes factor, and others. These measures use 

different measurement scales and different underlying theory, 

but they are all monotonically related to each other—i.e., they 

all go up and down in step, though in some cases in reverse 

step. So, the measures all operate quite similarly.  

For simplicity, this paper focuses on the p-value because 

it is intuitively sensible and because it is the most popular of 

the measures. However, the ideas in the paper apply equally 

to all the other standard measures of the weight of evidence 

of the existence of a relationship between variables. Any of 

those measures could (sometimes with minor caveats or ad-

justments) sensibly replace the p-value in the following dis-

cussion.  

In the case of the p-value, and assuming that the p-value 

is properly computed from an appropriate data table, then the 

lower the p-value computed from the data, the greater the 

weight of evidence in the data that the associated relationship 

between the variables exists in the population in a reasonable 

mathematical sense.  

Here is a formal definition of the p-value, which is in-

cluded for completeness, but which you needn’t understand:  

The p-value computed from a data table is the 

fraction of the time (i.e., the probability) that 

we will obtain a result at least as “extreme” (in 

terms of implying the existence of a relation-

ship) as the result reflected in the table if there 

is or were no relationship between the studied 

variables (and if certain often-adequately-satis-

fied assumptions are adequately satisfied).  

Because the p-value represents a fraction of the time, the 

value of a computed p-value always lies between 0 and 1.  

For people who aren’t statisticians, data scientists, or 

mathematicians, the definition of the p-value is difficult. This 

is because the “at least as extreme” idea is hard to understand 

and because the definition uses the complicated concept of 

conditional probability, as indicated by the two “if” clauses at 

the end of the definition. Therefore, many people misunder-

stand the precise technical meaning of the p-value.  

Fortunately, researchers (including statisticians and data 

scientists) should not try to understand the role of the p-value 

in empirical research in terms of conditional probability. This 

is because that task is an unnecessary and complicated dis-

traction. Instead, we need only understand the role of the p-

value in terms of its function as a measure of the weight of the 

evidence for the existence of a relationship between variables 
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(or for the existence of some other research effect). If every-

thing is done properly, the lower the value of the p-value, the 

greater the weight of the evidence that the studied relationship 

or effect exists in the population. This point of view (with no 

notion of conditional probability) is sensible, is arguably fully 

adequate for empirical-research work, and is much easier to 

understand than the technical definition of the p-value in 

terms of complicated (though also very sensible) conditional 

probability. 

The idea in the preceding paragraph that “everything is 

done properly” is fundamental in science. There must be no 

reasonable alternative explanation for a low p-value before 

we can trust it, where the concept of “reasonable” is at the 

discretion of the relevant research community. Any alternative 

explanation is potentially acceptable to the community as 

long as it is “reasonable”. The idea of “no reasonable alterna-

tive explanation” includes the important idea that the tech-

nical assumptions underlying the computation of the p-value 

must be adequately satisfied.  

The idea of “no reasonable alternative explanation” re-

flects, from a different point of view, Popper’s idea of “sever-

ity of tests” (1980, sec. 82) and Mayo’s idea of “severe test-

ing” or “severe scrutiny” of an empirical-research result 

(2018). Of course, good empirical research is carefully de-

signed to attempt to eliminate the possibility of reasonable al-

ternative explanations arising of the results. 

Although the mathematical theory behind the p-value is 

somewhat complicated, it is easy to compute required p-val-

ues with modern data-analysis software. That is, if we give 

modern software a data table and a few simple instructions, 

the software will automatically compute the required p-values 

for the table and display them in the output together with other 

important information about the data, including information 

to help us check if the underlying assumptions are adequately 

satisfied. (Commercial data-analysis software is generally 

substantially easier to use than free software due to superiority 

in documentation, output design, and testing.) 

The definition of the p-value implies that p-values are 

meaningfully comparable from one research study to the next. 

We will see in the next section how we can use the p-value to 

sensibly distinguish between positive and negative results. 

We will also see how the distinction between positive and 

negative results is fundamental in publishing scientific jour-

nals. 

4. The Perspective of a Scientific Journal 

Scientific journals are the main channels for disseminating 

new scientific information. The publication of a research pa-

per in a reputable scientific journal implies that the paper has 

passed through peer review, which implies that the paper was 

vetted, was usually improved as part of the vetting, and was 

judged to be worth publishing by the editors and referees. Re-

searchers are eager to have their papers published in scientific 

journals because that makes a social contribution and may 

also bring the researchers recognition and reward. 

Many papers that are published in scientific journals re-

port about the analysis of the data from an empirical-research 

study. As noted above in section 1, these analyses can usually 

be sensibly viewed as studying one or more relationships be-

tween variables observed in the data. We focus on the process 

of publishing (in scientific journals) papers about relation-

ships between variables observed in empirical research. 

4.1 Journals Wish to Publish Positive Results  

A scientific journal wishes to publish papers that report inter-

esting positive results about new relationships between varia-

bles. This is because if the variables were carefully chosen, 

interesting correct positive results about new relationships are 

invariably useful. That is, the new knowledge of the relation-

ship will give us the ability to better predict, control, or un-

derstand the variables in the entities in the studied population. 

For example, if medical researchers can find a beneficial new 

causal relationship between the amount of a certain drug 

given to medical patients and the amount of a certain disease 

in the patients, then this may enable doctors and patients to 

better control the disease. 

In contrast, scientific journals generally don’t want to pub-

lish papers that are reporting negative results. This is because 

these results usually tell us nothing new, so they are generally 

uninformative and uninteresting. In particular, you can’t sen-

sibly do prediction or control from a negative result. For ex-

ample, if there is no good evidence of a relationship between 

a drug and a disease, then doctors and patients can’t do much 

with that. 

Appendix E further discusses why it is generally ineffi-

cient for scientific journals to publish negative results. 

4.2 Using a Threshold p-Value to Distinguish Between Pos-

itive and Negative Results  

So, a journal needs an efficient way to distinguish between a 

positive result and a negative result. Some journals make this 

distinction by saying to the researcher, “The p-value for the 

main result (i.e., the main reported relationship between vari-

ables) in your research paper must be less than or equal to our 

threshold p-value of 0.05 before we will view your result as a 

positive result and will therefore consider your paper for pub-

lication.” This enables the journal to automatically decide 

quickly and fairly whether a paper has enough weight of evi-

dence to make the paper worth considering. 

Journals that publish empirical-research papers have used 

statistical thresholds as a gateway to publication since at least 

the 1950s, as illustrated by the leading journal in experimental 

psychology at that time, the Journal of Experimental Psychol-

ogy (Melton 1962). Some journals use 0.01 as the threshold 

p-value instead of 0.05, and other values may also be used, at 

each journal’s discretion. We discuss how a journal chooses 

its threshold value later below. 

Metaphorically, a journal says to the researcher, “You 

must be at least 4 feet tall to be allowed on this ride.” Of 

course, in the case of an amusement park, this rule isn’t used 
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to be arbitrary or mean to children—it is used to ensure the 

safety of the ride. In the case of the threshold p-value, the 

journal wishes to ensure that there is enough weight of evi-

dence for a relationship between variables. This is because the 

journal wishes to avoid mistakenly publishing a report about 

a claimed new relationship between variables when the rela-

tionship actually doesn’t detectably exist in the population 

and the paper is reporting about mere noise in the data. Also, 

the rule enables the journal to save time at the ticket booth by 

avoiding both quibbling and puzzling in individual cases. 

Journals often use an implicit threshold p-value. This is 

generally because they don’t know how to justify an explicit 

threshold. Appendix M presents an argument to justify an ex-

plicit threshold.  

In the case of an implicit threshold, the threshold value 

isn’t stated explicitly in the journal’s instructions to authors, 

but the specific threshold value (e.g., 0.05) is well known to 

researchers in the journal’s field through word of mouth and 

through observation of the p-values for the main results in the 

papers published in the journal. However, for ease of under-

standing, we ignore the distinction between explicit and im-

plicit thresholds and we assume that all journals using thresh-

old values use an explicit threshold value, which is arguably 

the preferred approach for scientific transparency. Appendix 

G further discusses why some journals use an implicit thresh-

old p-value. 

If the p-value for a research result is less than or equal to 

a journal’s threshold p-value, then it is customary to say that 

the result is “statistically significant”. This label is a useful 

shorthand to indicate if a result has satisfied the journal’s 

weight-of-evidence criterion. 

The concept of statistical significance is often misunder-

stood because it is often used with different meanings. In the 

view of this paper, if a research result is statistically signifi-

cant, this only means that the result has satisfied a journal’s 

weight-of-evidence criterion for acceptance for consideration 

for publication. In particular, if a result is or isn’t statistically 

significant, this doesn’t mean that the result is a “true” or a 

“false” result, as explained below in section 5. 

It is important to understand that a journal’s threshold p-

value defines a barely sufficient condition for good evidence 

that the reported relationship between variables exists in the 

population. Researchers and editors almost always hope that 

the main p-value obtained in a research study will be well be-

low the journal’s threshold p-value because (assuming that 

everything is done properly) the lower the p-value, the greater 

the weight of the evidence that the studied effect is real in the 

population. 

4.3 Necessary and Sufficient Conditions for Publication 

Satisfying the threshold-p-value condition is a necessary con-

dition for an empirical-research paper to be published in some 

scientific journals, but it is certainly not a sufficient condition. 

That is, a reputable journal will have two other necessary 

conditions that a paper must also satisfy before the journal 

will publish the paper.  

First, the paper must be of enough interest to the journal’s 

readers, as judged by the journal’s editors and referees. The 

judgment is made in terms of the perceived scientific and so-

cial usefulness in the journal’s field of the observed putative 

relationship between variables. Of course, judging the interest 

involves considering the observed form of the relationship be-

tween the variables because some forms of a relationship will 

be more interesting than others.  

A second and important condition for publication of a pa-

per in a reputable journal is that both the research and the re-

porting of the research in the paper must exhibit enough qual-

ity according to the journal’s standards, as also judged by the 

editors and referees. The quality condition is highly multifac-

eted.  

The interest condition, the quality condition, and the 

threshold-p-value condition must all be satisfied before some 

scientific journals will publish a submitted empirical-research 

paper. However, a journal usually evaluates the interest con-

dition and the threshold-p-value condition of a newly submit-

ted paper before evaluating the quality condition. This is be-

cause an experienced editor can usually evaluate the interest 

condition and the threshold-p-value condition for a new paper 

in less than half an hour. But it often takes more than 10 hours 

(perhaps many more) for a journal’s editors and referees to 

evaluate (and often stimulate the author to improve) a paper’s 

quality. So, if a paper fails to satisfy the necessary interest 

condition or fails to satisfy the necessary threshold-p-value 

condition, then the editor can reject the paper without sending 

the paper out for quality review, which saves editors’ and ref-

erees’ time. 

4.4 Section Summary  

A scientific journal can use a threshold p-value to deter-

mine whether a relationship between variables reported in a 

submitted paper has enough associated weight of evidence to 

make the result a positive result. The journal will accept a pa-

per for consideration for publication if the main result in the 

paper is a positive result and if the ideas in the paper are of 

enough interest to the journal’s readers. The journal will pub-

lish the paper if it successfully passes through a review of its 

quality. 

The following sections discuss how the threshold-value 

gateway is efficient.  

5. The Threshold p-Value Makes Errors 

The threshold p-value would be perfect for detecting relation-

ships between variables if it could always be right about 

whether the studied relationship between variables exists in 

the population. But the threshold p-value makes two types of 

errors. There appears to be no way to escape from these errors 

in empirical research.  



The Optimal Threshold p-Value for a Scientific Journal 5. 

 

5.1. False-Positive Errors 

A false-positive error occurs if the computed p-value for a re-

lationship between variables is less than or equal to a journal’s 

threshold p-value, suggesting that the studied relationship be-

tween variables exists but, in fact, the relationship doesn’t de-

tectably exist in the population. As discussed in appendix D, 

false-positive errors are published surprisingly often in the 

empirical-research literature. 

False-positive errors are the main cause of the so-called 

replication crisis in empirical research. That is, if you try to 

replicate or use a published false-positive result, you will al-

most always fail. (You will fail unless your research also 

makes a false-positive error, which is always possible.)  

A false-positive error can occur due to chance, as ex-

plained in Appendix M. Also, a false-positive error can occur 

if the researcher breaks the rules for computing and reporting 

p-values. 

In general, a paper reporting a false positive result looks 

no different from a paper reporting a true positive result. So, 

if a paper reporting a false-positive result can satisfy a jour-

nal’s conditions for publication, then the journal will publish 

the paper, thereby unknowingly contributing to the replication 

crisis. This is normal science because, as noted, some false-

positive errors are inescapable in empirical research. 

False-positive results in the empirical-research literature 

are costly because they lead to a waste of resources for the 

original researcher and for other researchers who try to use or 

extend the false results.  

Of course, false-positive results in the literature are iden-

tified and corrected through the process of replication. Other 

researchers invariably attempt to use or extend interesting 

new positive results. In doing that, the researchers indirectly 

replicate the results. In the case of attempting to replicate a 

result that reflects false-positive error, the researchers will 

fail, and thus the false-positive error will be exposed. This re-

flects the continuity of science in which new research gener-

ally builds on or extends earlier research. 

Uninteresting false-positive results in the scientific litera-

ture generally aren’t replicated, which reduces replication 

costs. So, uninteresting false-positive results generally remain 

uncorrected in the literature. However, that isn’t a problem in 

a practical sense because these results are uninteresting.  

5.2. False-Negative Errors 

A false-negative error is the opposite of a false-positive error. 

A false-negative error occurs if the computed p-value for a 

relationship is greater than the journal’s threshold p-value, 

suggesting that the relationship between the studied variables 

may not exist in the population but, in fact, the relationship 

does exist in reasonable strength in the population.  

A false-negative error amounts to a missed discovery. A 

false-negative error can occur if the relationship between the 

variables is weak, if the study was poorly designed, if the re-

searcher made an error, or due to chance.  

False-negative errors are, by their nature, hidden. So, we 

don’t hear much about them. So, most of what we know about 

false-negative errors comes from theoretical considerations, 

which clearly imply that false-negative errors occur regularly 

in empirical research, though we don’t know exactly how of-

ten.  

Like false-positive errors, false-negative errors are costly, 

but for different reasons: False-negative errors lead to a loss 

of useful information for society and a loss of reward for the 

researchers who obtain the false-negative results. For exam-

ple, if a medical research study fails to detect that an effective 

new drug is effective, thereby committing a false-negative er-

ror, then society may lose the benefit of the drug.  

Of course, false-negative errors that have been incorrectly 

omitted from the scientific literature are identified and cor-

rected if another (or the same) researcher performs a new re-

search study of the relationship between the variables with a 

research design that can reliably detect the relationship. 

5.3. General Points  

The possibility of false-positive and false-negative errors im-

plies that we can’t have strong faith in individual findings in 

empirical research. That is, any new positive finding might be 

a false-positive error, and any new negative finding might be 

a false-negative error. However, we can put our faith in the 

overall system under discussion. This is because, as we will 

see below, if the system is used properly (and we must always 

check carefully for that), it is designed to minimize (over the 

long run) the sum of the costs of the false-positive and false-

negative errors a journal makes in selecting papers to consider 

for publication. 

Of course, though we can’t have strong faith in an individ-

ual positive result, we can certainly (in the absence of a rea-

sonable alternative explanation) view a positive result as be-

ing suggestive. And if a positive result is interesting enough, 

someone will try to replicate or extend the result which, if 

successful, will help to confirm the existence of the studied 

effect.  

For completeness, it is noteworthy that false-positive and 

false-negative errors are traditionally named “type 1” and 

“type 2” errors, respectively. However, those names are infe-

rior because they are unnecessarily confusing for beginners. 

6. Controlling the Error Rates 

As explained in appendix M, it is easy to show mathemati-

cally that a journal’s threshold p-value simultaneously con-

trols the long-run rates of both false-positive and false-nega-

tive errors in the journal. That is, if a journal uses a lower 

threshold p-value, then it will publish fewer false-positive er-

rors, but the journal will make more false-negative errors in 

the sense of refusing for consideration for publication more 

papers that are reporting evidence about real relationships be-

tween variables. And vice versa. 

So, a journal has a dilemma—where should it set its 

threshold p-value to sensibly balance the long-run rate of 
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false-positive errors that it incorrectly publishes against the 

long-run rate of false-negative errors that it should publish but 

incorrectly fails to publish? How should a journal sensibly 

choose its threshold p-value? 

7. The Optimal Threshold p-Value 

The choice of the optimal threshold p-value for a scientific 

journal is conceptually surprisingly simple—the journal 

chooses the value that maximizes the scientific and social 

benefit resulting from the research papers that are published 

or are refused publication in the journal. This approach is sen-

sible because, arguably, a journal’s goal should be to maxim-

ize the long-run scientific and social benefit of its published 

papers. 

The journal maximizes the benefit by finding the “sweet 

spot” for the threshold value that minimizes the long-run sum 

of the costs of the false-positive and false-negative errors, 

which helps to maximize the benefit. This cost minimization 

includes the cost of the replication research that fails to repli-

cate earlier false-positive research. Setting the threshold p-

value at the optimal value to minimize the sum of the costs of 

the errors is useful because, as noted, the two types of errors 

occur regularly in empirical research and are costly.  

Appendix M presents a graphical and mathematical argu-

ment showing that the optimal threshold p-value for a scien-

tific journal exists and is unique to each journal. 

8. Choosing the Optimal Threshold p-Value 

The argument in appendix M implies that the optimal thresh-

old p-value for a scientific journal exists and is unique, which 

is important to establish. However, the argument can’t deter-

mine the actual numeric optimal value for a journal. So, a 

journal must use other means to determine the optimal value.  

Ideally, a journal would choose its optimal threshold p-

value based on formal empirical research about the scientific 

and social benefits realized and the costs incurred under dif-

ferent journal-publication policies. However, for technical 

reasons, we can’t reliably measure (a) the ongoing benefits of 

correct empirical research or (b) the ongoing costs of false-

positive and false-negative errors in empirical research. Thus, 

we can’t determine the “loss function” (i.e., the sum of the 

costs of the false-positive and false-negative errors) for a jour-

nal as a function of the threshold p-value used by the journal.  

Therefore, a journal (apparently) can’t determine the opti-

mal threshold value (i.e., can’t determine the threshold p-

value that minimizes the loss function) based directly on for-

mal empirical research. So, a journal chooses its threshold p-

value based on carefully considered experience and intuition 

among journal editors and researchers combined with norms 

that have been shaped by the multitudes of editors and re-

searchers who have used threshold values over the past 100 

years.  

Fisher provided the initial intuition for the idea of a thresh-

old p-value of 0.05 (1925, secs 12, 20−26). However, in his 

view, the threshold was used by the researcher as a way of 

deciding whether to tentatively believe in the existence of an 

effect. That is different from (though not contradictory to) the 

view in this paper and in some scientific journals that the 

threshold value serves as a gateway to publication in a journal. 

The often-mentioned threshold p-values of 0.05 and 0.01 

may be popular because, at least for some journals, they ap-

pear to give us a roughly optimal long-run cost trade-off be-

tween the false-positive and false-negative errors made by the 

journals in the process of selecting papers to consider for pub-

lication. 

Appendix K discusses the question whether the threshold 

p-value of 0.05 is somewhat arbitrary. 

9. Conclusions 

The p-value is a mathematically sensible measure of the 

weight of evidence provided by a data table that a studied re-

lationship between variables exists in the studied population. 

If everything is done properly, the lower the p-value for a re-

search result, the greater the weight of evidence that the asso-

ciated relationship between variables exists. 

A scientific journal can specify that the p-value for the 

main result in a research paper must be less than (or equal to) 

the journal’s threshold p-value before the journal will con-

sider the paper reporting the result for publication. Using a 

threshold p-value as a gateway to publication helps the journal 

to optimally balance its long-run rates of published false-pos-

itive errors and unpublished false-negative errors. This bal-

ancing minimizes the sum of the error costs, which helps to 

maximize the long-run scientific and social benefit of the re-

search papers published in the journal. 

This concludes the main discussion in this paper, giving 

an overview of the key ideas. 

 



Appendices 

Appendix A: The Form of a Relationship Between 
Variables  

If a research study finds good evidence that a potentially use-

ful relationship between variables exists, then the research pa-

per reporting the results of the study will usually discuss var-

ious aspects of the form of the observed relationship. These 

ideas help us to understand the (presumed) relationship, so a 

research paper may discuss them in substantial detail. A paper 

may present: 

1. graphs illustrating the observed relationship  

2. an estimate of the “effect size” or “strength” of the relation-

ship and an estimate of the precision of the estimated effect 

size 

3. a proposed “model equation” that is a mathematical model 

of the relationship, which typically has the general form  

𝑦 = 𝑓(𝑥;  𝜃) + 𝜀 

where 𝑦 is the response variable; 𝑥 is the vector (i.e., or-

dered set) of one or more predictor variables; 𝑓(𝑥;  𝜃) is an 

explicit mathematical function of 𝑥; 𝜃 is the vector contain-

ing the estimated numeric values of the one or more param-

eters of the function; and 𝜀 is the error term representing the 

random error that the function makes each time it makes a 

prediction, this error being different and unpredictable 

(though following rules) for each prediction 

4. estimates of the precision of the estimates of the values of 

the parameters (i.e., 𝜃) of the model equation  

5. an estimate of the precision of the predictions or control 

made by the model equation for new entities from the pop-

ulation, which is an estimate of the average size of 𝜀 for 

new predictions from the model equation; the precision 

generally depends on the value of 𝑥—values of 𝑥 near the 

middle of the range will generally lead to more precise pre-

dictions than values near the ends of the range.  

The graphs in the first item of the list are highly important 

because a good graph can show a relationship between varia-

bles at a glance. The other items in the list vary in importance 

from one research study to the next.  

It is noteworthy that, for technical reasons, effect sizes and 

parameter estimates in empirical research are often overesti-

mates in absolute value. Similarly, real-life prediction accu-

racy or prediction precision may turn out to be less than im-

plied by the analysis. Experienced researchers bear these facts 

in mind when they are considering the results of research. We 

might mathematically attempt to correct these problems, 

though that may be overrefinement due to (a) the required 

speculation and (b) the ever-present noise, which muddies 

things up. 

Though the preceding five aspects of the form of a rela-

tionship are simple at the conceptual level, they are compli-

cated in the details because there are many different forms of 

a relationship between variables, and the underlying math is 

often somewhat complicated. Statistics and data science text-

books explain the details of the form of a relationship between 

variables.  

Appendix B: Scientific Hypothesis Testing 

B.1 The Research and Null Hypotheses 

Statisticians, data scientists, editors, and researchers some-

times sensibly refer to the procedure of checking whether a p-

value is less than (or equal to) a threshold p-value as a “statis-

tical test” of the “research hypothesis” (or of the opposing 

“null hypothesis”). The research hypothesis says that a rela-

tionship exists between the variables. In contrast, the null hy-

pothesis says that no relationship exists between the varia-

bles. If the p-value is less than or equal to the threshold p-

value, then the research hypothesis has, so to speak, passed 

the statistical test.  

Following an old tradition, the research hypothesis is 

sometimes referred to as the “alternative hypothesis”. How-

ever, that is a misnomer because it inappropriately downplays 

the vital importance of the research hypothesis in empirical 

research.  

Note that the research hypothesis says nothing about the 

form of the relationship between the variables, which is dis-

cussed in the preceding appendix. The research hypothesis 

only says that a relationship exists. 

Sometimes researchers state the research hypothesis and 

the corresponding null hypothesis in a research study in alge-

braic terms about the value of the relevant parameter of the 

model equation of the relationship between the variables. That 

is, the null hypothesis states that the value of the parameter is 

equal to the “null” value—the value the parameter will have 

if there is or were no relationship between variables. The re-

search hypothesis states that the value of the parameter is dif-

ferent from the null value. This mathematically succinct point 

of view is important because it helps us to understand the 

mathematical details of the relationship and is a technical ba-

sis for computing the p-value and the other measures of the 

weight of evidence. However, this point of view tends to hide 

the fact that the two hypotheses are readily and sensibly 

viewed as being about the existence of a relationship between 

variables. We sometimes get buried in the algebra and lose 

sight of the science. 

B.2 Is the Null Hypothesis or the Research Hypothesis Ever 

True? 

The null hypothesis for a relationship between variables has a 

special status. This is because, due to measurement limita-

tions, we can almost never empirically prove that a given null 

hypothesis is true. That is, we can almost never empirically 

prove that a given relationship between variables doesn’t ex-

ist. The relationship might very well exist but, for one reason 
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or another, we have failed to detect it, as discussed below in 

appendix E. 

However, the scientific principle of parsimony (Baker 

2022) tells us to keep things as simple as possible and there-

fore to assume that any null hypothesis is true until (if ever) 

someone provides good evidence to the contrary. This implies 

that we almost never need to perform analyses or do research 

to try to show that a null hypothesis is true. Instead, we effi-

ciently assume that each null hypothesis is true until someone 

shows otherwise. 

Though we rarely try to prove that a null hypothesis is 

true, we do need to do research and perform analyses if we 

wish to show that a given null hypothesis is false, which is 

almost always what we wish to show. In this case, following 

the principle of parsimony, we begin with the assumption that 

the relevant null hypothesis is true. However, this assumption 

is usually only a formal assumption because we usually don’t 

believe it. And we usually believe the opposite or we wouldn’t 

be doing the research.  

That is, we hope that our research will provide enough 

good evidence to allow us to “reject” the assumed null hy-

pothesis and to allow us to conclude that the research hypoth-

esis is likely true—conclude that a relationship likely exists 

between the relevant variables. “Enough good evidence” con-

sists of a relevant p-value that is less than (or equal to) a jour-

nal’s threshold p-value and the absence of a reasonable alter-

native explanation for the low p-value. 

It is useful to rephrase an important point in section 4.2 of 

the body of this paper in hypothesis-testing terms: If a re-

search hypothesis passes an appropriate statistical test, this 

doesn’t mean that the hypothesis is necessarily true, and the 

studied relationship exists. This is because the outcome might 

reflect a false-positive error. Instead, it simply means that the 

weight of evidence is enough to make the finding a positive 

result and to make the paper reporting the result worth con-

sidering for publication. 

On a side note, if a hypothesis test about a relationship 

between variables can’t decide whether a relationship defi-

nitely exists (i.e., can’t decide whether the research hypothe-

sis is definitely true), then how is the decision about the exist-

ence of a relationship between variables made in science? In-

terestingly, the decision about whether a relationship between 

variables exists is never made formally in science because 

every scientific idea is open to revision if the revision can be 

shown to be efficient. This is because we sometimes find we 

are wrong or inefficient about a scientific idea when new in-

formation or new theory comes to light. So, no idea in science 

is cast in stone. 

However, an informal decision about the existence of a 

relationship is made implicitly and gradually by the relevant 

research community. The decision is reflected in the commu-

nity members’ written and spoken remarks about the relation-

ship. Of course, the informal decision about the existence of 

a relationship between variables occurs in a scientific 

community after the relevant result has been believably repli-

cated one or more times in independent research. 

It is sometimes suggested that the null hypothesis may 

never be true in empirical research and therefore hypothesis 

testing may be unnecessary. To help understand this, consider 

the imaginary situation in which we have perfect measuring 

instruments, and we have a sample consisting of the entire 

population, and we can properly measure the relevant varia-

bles with our perfect instruments in every entity in the popu-

lation. In this situation, we can say that the null hypothesis is 

precisely true only in cases when the relevant computed effect 

size from the complete data is precisely equal to zero. 

If we could carry out this exercise with multiple sets of 

different variables in multiple populations, we would almost 

certainly occasionally find that the measured effect size is 

precisely zero, though it is unknown how often we would get 

precisely zero. Would we obtain an effect size of precisely 

zero in once in 20 cases, or in once in 20 trillion cases, or 

somewhere in between (or beyond)? 

The preceding points suggest that the null hypothesis is 

likely sometimes (though perhaps not very often) precisely 

true in scientific research. However, having established that 

idea, we can see that it isn’t directly relevant for the exercise 

of scientific hypothesis testing. This is because it doesn’t mat-

ter whether the null hypothesis is ever precisely true because 

we aren’t interested in that. Instead, researchers are almost al-

ways trying to prove that the null hypothesis is empirically 

shown to be false, and, for that, it doesn’t matter whether it is 

ever precisely true—that is irrelevant. 

This is reflected in the fact that there are three possible 

categories of interest, not two. The categories are: 

1. The null hypothesis is precisely true. 

2. The null hypothesis is “in effect” true in the sense that the 

size of the effect of interest is nonzero but it is too small 

(perhaps much too small) for us to detect with current 

measuring instruments and affordable sample sizes. 

3. The null hypothesis is demonstrably false. 

Researchers and journals aren’t interested in distinguishing 

between when the null hypothesis is precisely true and when 

it is not precisely true but is in effect true because the distinc-

tion generally isn’t useful because it can’t be made empiri-

cally. Instead, researchers and journals are interested in dis-

tinguishing between when (a) the null hypothesis is either pre-

cisely true or in effect true and (b) the null hypothesis is al-

most certainly false. If we can correctly show that the null hy-

pothesis for a relationship in a carefully chosen set of varia-

bles is almost certainly false, then we will have almost cer-

tainly found a scientifically and socially useful relationship 

between variables. And, for that, it doesn’t matter whether the 

null hypothesis is ever precisely true. 

Consider the borderline in empirical research between (a) 

when a null hypothesis is precisely true or in effect true, and 

(b) when the null hypothesis is demonstrably false. This bor-

derline is fuzzy, which is of philosophical interest. However, 
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the fuzzy borderline doesn’t cause practical problems. This is 

because the nature of the situation implies that the borderline 

is always well outside the range of our measuring instruments. 

So, we needn’t be concerned about the precise distinction be-

tween the two cases in an empirical sense. 

B.3 Some Exceptions 

It is instructive to study exceptions to the general idea that we 

can’t prove that a null hypothesis is true. A rare exception oc-

curs if the research hypothesis specifies the strength of the re-

lationship under consideration. In this case, appropriate data 

can provide “good evidence” that the research hypothesis is 

false and therefore the corresponding null hypothesis is true. 

This happens occasionally in the physical sciences when the 

strength of a relationship (or the smallest possible strength) if 

the relationship exists, can be derived from physical theory. 

Another exception occurs in “equivalence testing” of a 

new generic drug in an attempt to show that the drug is 

“equivalent” on key attributes to the more expensive brand-

name drug that the generic drug aspires to replace. In this 

case, we can’t prove that the two drugs have exactly the same 

relationship to the disease or to side effects. That is, we can’t 

prove that the two drugs are identical on the key attributes—

we can’t prove that the various relevant null hypotheses of no 

differences are true. However, we can use a measure of the 

weight of evidence to sometimes demonstrate that there is no 

good evidence of a difference between the two drugs on each 

attribute when we study the possible differences carefully. Of 

course, this exercise is subject to false-negative and false-pos-

itive errors, just as in standard empirical research. 

B.4 Terminology 

The procedure of checking whether a p-value is less than (or 

equal to) a threshold value is sometimes called “null-hypoth-

esis significance testing”, with the acronym NHST. However, 

that name is less appropriate because researchers generally 

aren’t interested in the null hypotheses associated with their 

research. Thus, for the sake of understanding, the name of the 

procedure should reflect a more central idea. The present pa-

per refers to the concepts under consideration as the “thresh-

old-value gateway to publication” (of an empirical-research 

paper in a scientific journal). 

Appendix C: Four Views of the Use of a Threshold 
p-Value 

There are at least four different views of the use of a threshold 

p-value in empirical research. Three of the views can each be 

seen as a “decision procedure,” with each view making a dif-

ferent type of decision. 

First, in the view discussed in the body of this paper, each 

scientific journal chooses its own threshold p-value. This 

value is used by the journal to decide whether a paper report-

ing empirical research has enough weight of evidence for its 

main result to make the paper worth considering for publica-

tion in the journal. 

Section 7 in the body of this paper says that a journal 

chooses its threshold p-value so as to minimize the sum of the 

costs of the false-positive and false-negative errors the thresh-

old makes in selecting papers to consider for publication. It is 

noteworthy that many editors of journals that publish papers 

reporting empirical research don’t view the journal’s choice 

of the threshold value in these terms. This is because the the-

oretical idea of minimizing the sum of the error costs isn’t 

well known. Instead, as suggested in section 4.2 of this pa-

per’s body, the editor views the threshold as indicating the 

minimum weight of evidence required to make a paper worth 

considering for publication. This concept emphasizes control-

ling false-positive errors and it pays less attention to false-

negative errors.  

However, as editors become more experienced, they rec-

ognize that the basic idea of “minimum weight of evidence” 

can be usefully expanded to the idea of balancing false-posi-

tive and false-negative errors against each other. Experienced 

editors wish to sensibly balance or compromise between these 

errors in their journals because they sense that if this compro-

mise is properly done, it is the optimal approach to initially 

select papers for consideration for a journal—optimal to max-

imize the scientific and social benefit of the papers published 

in the journal.  

A second view of the use of a threshold p-value is that the 

researcher chooses the threshold value, and the threshold 

somehow decides, or enables the researcher to decide, 

whether a relationship between variables (or some other stud-

ied effect) exists in the studied population. (Formally, the 

threshold p-value is thought to decide whether the research 

hypothesis or the null hypothesis in a research study is true.) 

This view is incorrect because a threshold p-value can’t pos-

sibly decide whether a relationship exists because the thresh-

old sometimes makes false-positive and false-negative errors.  

For example, Benjamin, Berger, Johannesson, et al. call 

for changing the threshold p-value from 0.05 to 0.005 for 

“claims of discovery of new effects” (2018, p. 6). Here, they 

mean claims by researchers of the discovery of new effects 

(i.e., usually new relationships between variables). And they 

explicitly say in the “Concluding remarks” section of their ar-

ticle that they aren’t discussing a threshold for publication of 

new findings in journals. 

Similarly, Lakens et al. (2018) say that researchers (not 

journals) should “justify” the threshold values that they use, 

and Maier and Lakens (2022) propose some ways to help re-

searchers do that. Similarly, Gönen, Johnson, Lu, and West-

fall discuss setting a threshold value from the point of view of 

either minimizing the total probability of misclassification 

(i.e., minimizing the total probability of false-positive and 

false-negative errors) or minimizing the costs of these errors 

through a loss function, saying that “Such an approach allows 

researchers to differentially weight [false-positive] and [false-

negative] errors if desired (2019, p. 29)”. Note the reference 

to researchers.  
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Similarly, Miller and Ulrich (2019) make an argument 

close to the argument in the present paper about using the op-

timal threshold p-value to maximize the benefit. However, 

they make the argument from the point of view of the re-

searcher as opposed to from the point of view of a journal. 

They refer on page 5 to the threshold value used by a journal, 

noting that it may constrain the researcher, but say it is “the 

researcher’s problem” to choose the threshold p-value (and 

the sample size) to maximize the payoff. Appendix M.7 below 

further discusses the Miller and Ulrich point of view. 

However, as observed in a survey of researchers by 

Białek, Misiak, and Dzieken (2023), when it comes time for 

researchers to choose the threshold value for an individual re-

search result, conscientious researchers find that hard to do. 

This is because it is difficult or impossible to realistically 

know the ramifications of different threshold values for indi-

vidual research results, any of which, if viewed as a positive 

result, might readily be a false-positive error.  

This difficulty also applies if the researcher (as opposed to 

a journal) tries to set the threshold value for a set of related 

results in a field. This is because different researchers may 

call for different thresholds. Therefore, as discussed in the 

body of this paper, it is more sensible for a journal to specify 

a common threshold for all submitted papers and to use the 

threshold as a fair and efficient gateway to publication in the 

journal. 

A third view of the use of a threshold p-value is that a sci-

entific journal chooses its own threshold p-value, and the 

threshold somehow decides whether a research paper will be 

published in the journal. This view, though partly correct, is, 

on balance, incorrect because it gives the threshold p-value 

more importance than it deserves. This is because, though sat-

isfying the threshold p-value condition is a necessary condi-

tion for publication in some reputable scientific journals, it is 

never a sufficient condition, as discussed in section 4.3 in the 

body of this paper. 

Due to the frequent misunderstanding of the concepts of 

statistical significance and the threshold p-value, a fourth 

view is that science should abandon the concepts (Wasser-

stein, Schirm, and Lazar 2019). That would be possible, but 

then it would take more words to indicate whether a research 

result has satisfied a journal’s weight-of-evidence criterion, 

which this paper argues is a sensible criterion. So, arguably, 

the concepts are useful. 

Appendix D: How Often Are False-Positive Errors 
Published in Scientific Journals? 

For technical reasons, it is difficult to measure the ongoing 

rate of occurrence of published false-positive errors in a field 

of science. However, in carefully performed, high-power, 

near-exact replications of 21 important positive research re-

sults in social science, replication failures occurred 38% of 

the time, that is, in 8 of the 21 studies (Camerer et al. 2018). 

This and other direct replication research suggests that 

somewhere between 20% and 60% of the published positive 

results in social-science journals are false-positive results.  

The high rate of false-positive errors isn’t limited to so-

cial-science research and is also recognized in biomedical re-

search (Ioannidis, 2005; Errington et al. 2021). False-positive 

errors are also likely present in the physical sciences, though 

they aren’t well documented.  

When some people hear about the high rates of false-pos-

itive errors in empirical research they are either alarmed or 

embarrassed—thinking that this state of affairs may be a cri-

sis. However, there is no need for alarm or embarrassment, 

and there is no crisis because the false-positive errors are nor-

mal science—there are false-positive errors in the empirical-

research literature because they are unavoidable if we wish to 

minimize the sum of the costs of false-positive and false-neg-

ative errors. 

Appendix E: When Should Scientific Journals Pub-
lish Negative Results? 

Negative results (i.e., results in which the relevant p-value is 

greater than a journal’s threshold p-value) occur surprisingly 

often in empirical research though we generally don’t hear 

about these occurrences because, as noted, they are generally 

uninteresting. Negative results occur often because nature’s 

secrets are hard to unlock, so researchers’ hypotheses about 

the existence of relationships between variables are, unfortu-

nately, often wrong. Negative results may also occur for other 

reasons, as discussed in section 5.2 of the body of this paper. 

So, it is quite normal that negative results occur in empirical 

research. 

Unfortunately, we can’t objectively know how often neg-

ative results occur in a given field of science. This is because, 

to know that, we would need to track negative results in the 

field. However, science generally doesn’t track negative re-

sults in a field because doing so is judged to be too difficult 

and too costly to justify the perceived small payoff. 

Some researchers and statisticians think that journals 

should regularly publish reports of negative results. This is 

because they think that reports of negative results tell us about 

relationships between variables that don’t exist, which would 

be useful to know. That is, they think that a negative result 

tells us that the null hypothesis is true.  

But a negative result can’t tell us that a relationship 

doesn’t exist—it can only tell us that good evidence of a rela-

tionship wasn’t found in the particular set of research condi-

tions that were used in the research. So, in most cases of neg-

ative results, perhaps if the researcher had only used slightly 

different research conditions or an improved research design, 

then the research might have properly found the sought-after 

relationship. For example, perhaps the relationship under 

study will only appear if the room temperature is above 25°C, 

but nobody knew that and (unfortunately) the research was 

performed at 20°C. So, negative results are almost never de-

finitive—they can almost never tell us that a studied relation-

ship between variables doesn’t exist. So, negative results 
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usually don’t provide much useful information. (They do tell 

us that, from the present result, there is no good evidence that 

a relationship does exist, but that generally isn’t useful in a 

practical sense.) 

Furthermore, even if negative results could tell us that a 

relationship between variables doesn’t exist, we still wouldn’t 

need to do empirical research to demonstrate this fact. This is 

because we (efficiently) assume that any relationship between 

variables doesn’t exist until someone provides good evidence 

to the contrary, as sensibly dictated by the principle of parsi-

mony. 

Also, the economics of scientific-journal publishing limit 

the number of papers that can be published to only the most 

interesting ones. There are usually more than enough interest-

ing positive results submitted to a journal, so negative results, 

being generally less interesting and less useful, are usually 

immediately eliminated from consideration. If we did wish to 

publish negative results, and since negative results occur of-

ten, we would need many more journals, editors, and referees, 

which is arguably economically infeasible. 

Some researchers think that if journals don’t publish neg-

ative results obtained in failed replications, then these results 

won’t be available to debunk false-positive results that are 

sometimes published. However, the sociology of science gen-

erally takes proper care of this issue—news about un-

published failed replications gets around quickly in a scien-

tific field through meeting presentations, online paper ar-

chives, social media, and personal communications. This is 

because scientists care greatly about what is true in their field. 

So, an interesting published false-positive result in a field is 

usually quickly called into question when other researchers 

can’t replicate the result. This informal approach is sensible 

because it generally casts adequate doubt on the original re-

search, while saving journal space for new positive results. 

Some authors describe the journal policy to omit publish-

ing negative results as “publication bias”—a term that sug-

gests that the omission of publication of negative results is 

somehow irrational or unfair. However, arguably, the general 

omission of publication of negative results is sensible because 

such results generally aren’t useful. 

Journals that specialize in publishing negative results ex-

ist, as can be seen by searching the web for “journal of nega-

tive results”. However, these journals don’t have much read-

ership or impact. And they usually cease publication when the 

founding editor retires. 

It is noteworthy for completeness that occasionally a neg-

ative result is sensational, surprising, or useful (e.g., for poli-

cymakers studying the effectiveness of a new policy). In this 

case, it may be sensible to publish the result in a peer-re-

viewed scientific journal. However, most negative results 

aren’t sensational, surprising, or useful, and are instead bor-

ing because they don’t tell us about a new relationship, so they 

aren’t published. 

Appendix F: Could a Journal's Threshold p-Value 
Be Discretionary on a Paper-by-Paper Basis? 

As discussed below in appendix M, the use of a threshold p-

value by a journal is theoretically optimal in the sense that if 

a journal chooses the appropriate threshold p-value, then this 

choice minimizes the sum of the long-run costs of the false-

positive and false-negative errors made by the journal. And, 

apparently, no other known approach can minimize the sum 

of the long-run costs of the errors and, apparently, there is no 

other viable criterion that we can minimize or maximize that 

would be more important than minimizing the sum of the 

long-run error costs. This supports the idea that the use of a 

threshold p-value is efficient. 

The approach is also sensible because journal editors will 

almost always wish to avoid publishing negative results be-

cause, as noted in section 4.1 in the body of this paper and in 

the preceding appendix, these results are generally much less 

useful than positive results. Also, as discussed in section 5.1 

of the body, editors will always wish to avoid publishing 

false-positive errors because such errors are scientifically 

costly and are somewhat embarrassing for both the journal 

and the editor when it later turns out that the result can’t be 

replicated. Therefore, papers without enough weight of evi-

dence must be screened out. And using a threshold p-value is 

a sensible way to do that, even though it makes errors.  

With the preceding ideas in mind, we can note that there 

are essentially three approaches that a journal can take with 

respect to assessing the weight of evidence behind the main 

result in an empirical-research paper:  

1. The journal can enforce a formal threshold p-value (or a 

formal threshold for some other sensible measure of the 

weight of evidence) for the main result in a submitted re-

search paper. In this case, researchers know that satisfying 

this threshold is a necessary condition for publication of a 

submitted paper, as discussed in the body of this paper.  

2. The journal’s editors and referees can assess the weight of 

evidence for the main result in a submitted paper infor-

mally on a paper-by-paper discretionary subjective basis.  

3. The journal can ignore the idea of initially (or even ever) 

assessing the weight of evidence behind the main result in 

an empirical-research paper and can instead assess the pa-

per based on other criteria. 

Arguably, we can immediately rule out the third approach be-

cause, as noted, a journal wishes to screen out papers that are 

reporting negative results or are reporting weak results that 

might reflect false-positive errors. So, most editors will agree 

that they must either formally or informally determine 

whether the main result in a submitted research paper has 

enough weight of evidence behind it to make the result a pos-

itive result. Thus, arguably, editors must choose approach 1 

or 2 from the list above. 

Approach 1 has the advantages that it is fair, fast, theoret-

ically optimal in a reasonable sense, and has worked well in 

some top-level scientific journals since the 1950s (Melton 
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1962). Approach 1 also has the advantage that the choice of 

the threshold value is made at the aggregate journal level as 

opposed to being made at the individual paper level. This 

makes approach 1 more reliable than approach 2. This is be-

cause, as noted in appendix C, it is difficult or impossible to 

reliably choose a custom threshold p-value for each submitted 

paper because it is difficult or impossible for an editor to 

know an individual paper’s ramifications. This is because if 

the main result in a paper is viewed as positive, it is always 

possible that the result is a false-positive error.  

In view of the apparent lack of advantages of approach 2, 

this paper postulates that approach 2 has no noteworthy ad-

vantages. Therefore, approach 1 is preferred to approach 2. 

So, arguably, the use of a fixed threshold value for a measure 

of the weight of evidence as a necessary condition for publi-

cation in a scientific journal is efficient and is therefore pre-

ferred. 

Despite the preceding argument, the threshold p-value for 

a journal needn’t be inviolable. And it should be possible for 

a journal editor to overrule the journal’s threshold value in a 

particular case if that seems useful. However, that won’t hap-

pen often because experienced editors know that it is difficult 

to distinguish between a signal and noise when a result is 

close to the borderline of statistical significance. And any 

seemingly promising almost-significant result might very 

well be a manifestation of noise. So, if the main result in a 

paper seems promising to a researcher, but isn’t statistically 

significant, then it is arguably better for the researcher to go 

back to the lab and to perform the research again, preferably 

with a more powerful research design to increase the chance 

that the studied effect will (if it exists) be convincingly de-

tected in the population. 

Appendix G: Implicit Versus Explicit Threshold p-
Values for Scientific Journals 

As noted in section 4.2 in the body of this paper, some jour-

nals use an implicit threshold p-value instead of an explicit 

one. In this case, the threshold p-value for a journal isn’t 

stated in the journal’s instructions to authors, but researchers 

who are familiar with the journal are well aware of the thresh-

old through word of mouth among researchers in the field. 

Researchers are aware of the threshold because the editors 

regularly reject papers if the p-value for the main result is 

greater than the journal’s implicit threshold value, usually 

with the editor informing the researcher that the weight of ev-

idence for the main result in the paper, as expressed in the p-

value for the result, isn’t enough. 

If a journal uses an implicit fixed threshold p-value, then 

we can quickly empirically identify the (likely) value by tab-

ulating the p-values for the main results in articles published 

in the journal over the last few years. If the p-values are all 

less than, say, 0.05, but if some are greater than 0.01, then this 

suggests that the journal is using an implicit fixed threshold 

p-value of 0.05. 

A sensible reason for a journal to use an implicit threshold 

value instead of an explicit one is that, in the past, there have 

been no widely accepted technical justifications of the use of 

a threshold value as a gateway to publication in a scientific 

journal. So, it was difficult for a journal editor to make a 

strong argument why a threshold is useful, and it was easy to 

think that using a threshold value was somewhat arbitrary, as 

discussed below in appendix K.  

Of course, if a journal’s use of a statistical threshold value 

seems arbitrary, then this makes it hard for the journal to de-

fend its use of a threshold. So, journals recognized that they 

couldn’t technically justify their use of a threshold. However, 

experienced editors also believed that the threshold was sen-

sible as a gateway to publication to control the rate of publi-

cation of false-positive errors. So, they used an implicit 

threshold that they didn’t discuss, which enabled them to use 

a threshold without having to defend it. 

A second reason why a journal might use an implicit 

threshold value is that the editor might think that the discre-

tionary aspect associated with an implicit threshold is to the 

journal’s advantage. In this case, which is discussed in the 

preceding appendix, the editor is betting, so to speak, that his 

or her judgment can beat the threshold p-value at its own 

game. That is a risky bet due to the high complexity of the 

subjects of empirical research and because any seeming posi-

tive result might be a false-positive result, with the chance of 

that directly related to, though generally greater than, the as-

sociated p-value, as discussed below in appendix M.7. 

Regardless of the reason for using an implicit threshold 

instead of an explicit one, many editors agree that a threshold 

is mandatory to help to control the rate of false-positive errors 

published in a journal because these errors are embarrassing 

and scientifically costly. 

A good early example of a journal using an implicit 

threshold p-value was the highly respected Journal of Exper-

imental Psychology (JEP) in the years between 1950 and 

1962. The instructions to authors in that period appeared on 

the inside front cover of the journal and copies of these in-

structions are available online (JEP 1960). The instructions 

say nothing about the journal’s use of a threshold p-value, 

though the instructions refer the reader to conventions in the 

American Psychological Association (APA) Publication 

manual. But both the 1952 APA Publication Manual (APA 

1952) and the 1957 revision (APA 1957) that were relevant 

during the period say nothing about using threshold p-values 

in journals. However, we know that between 1950 and 1962 

JEP mostly used an implicit threshold p-value of 0.01 because 

the editor during that period discusses this point in his final 

editorial (Melton 1962). 

For a modern example of the use of an implicit threshold 

value, consider the top-tier New England Journal of Medicine 

(NEJM). The “Statistical Reporting Guidelines” for this jour-

nal give detailed instructions for reporting p-values in papers 

submitted to the journal (NEJM 2023), but the instructions 

don’t specify an explicit threshold p-value for the main result 
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(primary outcome or primary endpoint) in a submitted paper. 

(The guidelines indirectly suggest that NEJM uses a threshold 

p-value of 0.05 in section B.d.) But it seems highly likely that 

the editors either (a) have a jointly agreed-on implicit thresh-

old p-value for the main result in submitted papers or (b) each 

editor uses their own personal threshold p-value in consider-

ing a paper for publication, with the personal threshold values 

possibly being discretionary on a paper-by-paper basis. We 

can be confident that the editors of NEJM use one or more 

formal or informal implicit thresholds for the p-value because 

these editors, like all knowledgeable editors, wish to avoid 

publishing embarrassing and costly false-positive errors in the 

journal. Using a threshold p-value (or a threshold for some 

other sensible measure of the weight of evidence) is, arguably, 

the best way to initially screen papers to minimize the cost of 

these errors. 

It is interesting that the general idea of using a threshold 

value for a measure of the weight of evidence as a gateway to 

publication is rarely formally discussed in the scientific liter-

ature, though it is implicit in some discussions. Formal dis-

cussion may be sparse because, as noted, the threshold-value 

gateway is sometimes implicit in journals. So, the idea tends 

to fade into the background. We glimpse the idea from time 

to time in formal discussions but only in passing. 

For example, an editorial in Nature says that the threshold 

p-value “decides whether … papers are published”, acknowl-

edging the role of the p-value in journal publication (“Signif-

icant debate” 2019). However, there is no further discussion 

about how this decision process for a journal works. 

Similarly, articles by Ioannidis (2005) and Jager and Leek 

(2014) use the concept of a threshold value for a journal, but 

they don’t say much explicitly about the threshold. Similarly, 

Campbell and Gustafson (2019) present a model of the selec-

tion of articles by a journal explicitly using a threshold p-

value as an important concept in the model. But they take this 

aspect of the publication process more or less for granted and 

they focus on a sensible model of the publication process to 

help understand how researchers might game the system. 

Habiger and Liang (2022) directly discuss the threshold-

value gateway to publication in terms of a measure of the 

false-discovery rate. However, they focus on controlling 

false-positive errors in journals (while saying little about 

false-negative errors) rather than focusing on minimizing the 

sum of the costs of the false-positive and false-negative er-

rors. 

The present paper recommends that a scientific journal 

use a single fixed threshold p-value that is chosen by the edi-

tor or editorial board of the journal. This value should be ex-

plicitly stated in the instructions to authors with a link to a 

discussion that clearly justifies the journal’s use of an explicit 

fixed threshold value. Making the threshold p-value explicit 

with a proper justification makes empirical research more 

transparent and therefore easier for researchers to understand. 

Appendix H: Can a Research Study Generalize 
from a Sample to the Population If It Doesn’t Use 
Random Sampling? 

As noted, researchers make generalizations from samples to 

populations of entities about the existence of relationships be-

tween variables in the population and about the associated 

form of the relationship. It is important to understand that, 

strictly speaking, for accepted technical reasons, we can make 

such generalizations from a sample to a population only if the 

sample is a random sample from the population. A sample is 

a random sample if every entity in the population has an equal 

chance of being selected to be in the sample. (Certain sensible 

refinements to this idea arise in more complicated research.) 

Proper random sampling is done regularly in empirical-

research studies when precise representation of the population 

is required. However, the samples of entities used in most em-

pirical-research studies are not random samples from the tar-

get population. Instead, the samples are so-called convenience 

samples that are obtained by using or recruiting entities that 

are readily at hand. This is because convenience samples are 

much easier to obtain than random samples and are often ad-

equate for the problem under study. 

In the case of a convenience sample, since the sample isn’t 

a random sample from the population, we generally can’t 

safely generalize the results from the sample to the full popu-

lation of interest. However, we can safely generalize the re-

sults from the sample to other entities that are “sufficiently 

like” the entities in the sample. Unfortunately, the concept of 

“sufficiently like” is vague. However, the concept is often 

judged to be acceptable for initial research, in which it is more 

important to detect new relationships between variables (or to 

detect other effects) and it is less important to have complete 

generalizability from the sample to the target population. 

For example, an experimental psychologist at, say, Stan-

ford University in California may perform an experiment us-

ing a convenience sample consisting of a group of psychology 

students at Stanford. The researcher uses this sample because 

students in a psychology department are relatively easy to re-

cruit to participate in psychology experiments in the depart-

ment. If the researcher obtains an interesting positive result in 

the research, then they will likely publish a paper about the 

result and the researcher will likely generalize the result be-

yond Stanford students, perhaps suggesting that the result 

may apply to all similar university students in California or to 

all similar university students in the United States. And for 

some relationships between psychological variables, psy-

chologists may think it is sensible to expect to find the rela-

tionship in all adults, even though the original research that 

discovered the relationship was performed using a sample of 

Stanford psychology students. 

Of course, such generalizations from a convenience sam-

ple to the full population amount to speculation, which is risky 

because the generalizations are sometimes wrong. However, 

researchers sensibly make such generalizations, preferably 

qualifying their remarks as carefully considered speculation. 
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And, of course, if there is doubt about the generalizability of 

a new relationship between variables that was found in a con-

venience sample, or doubt about the generalizability of the 

form of a relationship observed in a convenience sample, then 

we can investigate the generalizability in appropriate further 

research, perhaps using random sampling if high precision is 

required. 

It is noteworthy that in some cases, generalization from a 

convenience sample to the full population may be quite sen-

sible. For example, suppose that a physicist draws a conven-

ience sample of atoms of argon gas from a top-grade labora-

tory-quality cylinder of argon bought from a trusted chemical 

company. In this case, the physicist’s sample of argon atoms 

will (almost certainly) be essentially equivalent to a true ran-

dom sample of argon atoms from the complete population of 

atoms of argon that are local to the earth’s surface. So, any 

inferences that the physicist draws from the convenience sam-

ple of argon atoms will (almost certainly) apply to the full 

population of argon atoms that are local to the earth’s surface. 

Appendix I: When Do Scientific Journals Need to 
Use Statistical Significance? 

Some research papers published in scientific journals don’t 

report about empirical research studying relationships be-

tween variables. For example, some papers discuss (a) scien-

tific theories, (b) newly discovered entities (e.g., fossils, pro-

teins, celestial objects), (c) methods, (d) ethics, or (e) training, 

with no direct study of relationships between variables in em-

pirical research. Since we use the concept of statistical signif-

icance to help to detect relationships between variables, we 

generally don’t need the concept in research studies that aren’t 

studying (and can’t be interpreted as studying) relationships 

between variables in empirical research. 

Some research studies that use the concept of statistical 

significance don’t appear to be studying relationships be-

tween variables. However, usually such research can be sen-

sibly recast in terms of the study of a relationship between 

variables. For example, if a research study uses a two-sample 

t-test to compare the average values of a particular continuous 

variable between two groups, then one might think that this 

study isn’t studying a relationship between variables. How-

ever, it is easy to view this study as studying a relationship in 

which the response variable in the relationship is the continu-

ous variable, and the predictor variable is the binary variable 

that distinguishes between the two groups. 

Even when we are studying relationships, sometimes we 

don’t need the concept of statistical significance. For exam-

ple, some fields in the physical sciences don’t regularly use 

the concept of statistical significance because they usually 

study strong relationships between variables. In this case, the 

researcher and the journal don’t need the formal system of 

statistical significance to confirm that there is good evidence 

of a relationship. This is because merely looking at an appro-

priate graph of the sample data for a strong relationship will 

tell an experienced researcher that (assuming that the 

underlying research and analysis were done correctly) the re-

lationship definitely exists. And the graph will also imply that 

the computed p-value for the relationship would be extremely 

low if it were computed. So, in this case, the researcher 

needn’t compute a p-value (or some similar measure) to meas-

ure the weight of evidence, and the journal needn’t consider 

the concept of statistical significance. 

Also, in some research studies that study relationships be-

tween variables, we already know that the studied relationship 

exists, and the purpose of the research is to refine our 

knowledge of the relationship. In this case, in theory, we don’t 

need to check whether there is good evidence that the rela-

tionship exists though it doesn’t hurt to check to confirm that 

the analyses are working properly. 

In the case of “big data”, we have a data table with a large 

number of rows (i.e., entities in the sample) or a large number 

of columns (i.e., variables) or both. Here, the “large number” 

may be in the millions or billions for entities and in the thou-

sands or hundreds of thousands for variables. In this case, re-

searchers are still generally interested in relationships be-

tween the variables, and the relationships that are found are 

sometimes weak.  

So, if researchers studying big data wish to publish (in a 

reputable journal) a paper about a relationship between varia-

bles they have discovered in the data, they will need to pro-

vide good evidence in the paper that the relationship exists, 

just as with other empirical research. They can often do that 

with a properly applied measure of the weight of evidence. 

Alternatively, depending on the situation, they may be able to 

convincingly demonstrate the existence of the relationship 

graphically. Alternatively, researchers with big data may use 

the data to build a computer model of the relationship and then 

use the model to make accurate predictions or control in such 

a way that there is no doubt that the modeled relationship ex-

ists. 

So, a journal only needs to use the concept of statistical 

significance if it is evaluating a paper that is reporting about 

an observed new weak relationship between variables in a 

population and if the paper has no other way of demonstrating 

convincing evidence of the relationship. This situation occurs 

often in empirical research because most of the strong rela-

tionships between variables have already been discovered and 

because often research studies don’t have big data. So, using 

a measure of the weight of evidence is often the easiest way 

to demonstrate good evidence of the existence of a relation-

ship. 

Cox refers approvingly to the idea of a journal’s 0.05 p-

value threshold (1977, sec. 4.9). 

Appendix J: What If a Research Study Reports 
Many p-Values? 

The discussion in the body of this paper says that a journal’s 

threshold-value gateway applies to the main result in a paper 

submitted to the journal. What happens in a research study 

when there is no single main result, and the study is reporting 
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the results of study of multiple relationships between varia-

bles, thereby with multiple main p-values, such as 5 main p-

values or 500,000 main p-values?  

We refer to the research situation in which there are mul-

tiple main p-values as “multiple testing”—it is also some-

times called “multiplicity”. Dealing with multiple testing is 

important because modern researchers sometimes find it cost-

efficient to study multiple closely related relationships be-

tween variables simultaneously.  

In the case of multiple testing, for technical reasons, the 

researcher can expect some low or very low standard p-values 

even when the corresponding relationships between variables 

don’t exist. So, false-positive errors are easy to make. So, the 

researcher must take proper account of this fact. Various sen-

sible analysis methods are available to handle research studies 

that perform multiple testing, such as the method discussed 

by Benjamini and Hochberg (1995). These methods help re-

searchers, editors, and journal readers to decide whether the 

studied relationships between the variables likely exists in the 

population.  

Less experienced researchers who perform multiple test-

ing sometimes don’t take account of the multiple testing be-

cause taking account of it adds another layer of complexity to 

the data analysis. Also, taking account of multiple testing gen-

erally leads to substantially fewer statistically significant re-

sults. Sometimes, researchers don’t even report the fact that 

they did multiple testing, reporting only the statistical tests 

that yielded positive results. These practices, which generally 

happen through incomplete training, are all unethical because 

they lead to increased rates of published false-positive errors. 

In using formal methods to perform multiple testing, the 

goal is usually still to balance the costs of the false-positive 

and false-negative errors that the tests make in a way that min-

imizes the sum of the error costs. Thus, each method has a 

procedure (with an explicit or implicit threshold value) for de-

ciding whether a result is a positive result. And each proce-

dure will make false-positive and false-negative errors, which 

both the journal and the researcher would like to optimally 

balance. Choosing the optimal threshold value for one of 

these multiple-testing procedures is difficult (for both a jour-

nal and a researcher) due to the complexity and due to the 

typical uncertainty about the costs of the two types of errors. 

Thus, choosing the optimal threshold value for this research 

situation is an open problem, which is currently handled by 

researchers and editors through careful judgment about where 

to set the value on a case-by-case basis. 

If we study articles in the popular general scientific jour-

nals Nature and Science, we see that some articles report 

many p-values in graphs or tables with no corrections for mul-

tiple testing. No correction is made for multiple testing be-

cause these p-values aren’t deemed highly important and are 

merely viewed as being suggestive. If a particular one of these 

p-values is perceived as possibly indicating an important re-

lationship between variables, then it would be sensible (if not 

already done) to independently repeat the specific research 

that obtained this p-value to replicate the result to confirm that 

the suggested effect is real in the population and isn’t merely 

a false-positive error. 

Appendix K: Is 0.05 Somewhat Arbitrary? 

The choice of 0.05 for a scientific journal’s threshold p-value 

is somewhat arbitrary in the sense that 0.04 or 0.06 would be 

roughly equally as good as 0.05. The threshold p-value of 0.05 

is chosen because it is in the right ballpark, it is close to the 

home plate, and it is a “round” number, being rounder, so to 

speak, than 0.04 or 0.06. But the number 0.05 itself isn’t in 

any sense substantively important.  

The reason why the threshold p-value is somewhat arbi-

trary is that, as explained in section 8 in the body of this paper, 

we can’t determine the optimal threshold p-value for a scien-

tific journal with high precision. But, based on experience, 

many editors and researchers agree that the optimal value for 

many journals appears to lie somewhere in or close to the 

range between 0.05 and 0.01.  

It is noteworthy that physicists sometimes use much 

stricter thresholds than researchers in other fields. In this case, 

it is generally the researchers, not the journals that specify 

strict threshold values. For example, if we make some sensi-

ble assumptions, the standard threshold of 5𝜎 (five sigma) 

that is used by some physicists is equivalent to using a very 

strict threshold p-value of around 5.7 × 10−7. Using such a 

strict threshold greatly decreases the chance of false-positive 

errors though it also greatly increases the cost of the research 

to detect a given relationship. These are the trade-offs that re-

searchers and journals must make in order to balance false-

positive errors, false-negative errors, and direct research 

costs. The physicists’ approach of using a very strict threshold 

is consistent with the idea of minimizing the sum of the costs 

of false-positive and false-negative errors, with the added idea 

that false-positive errors are viewed as being much costlier 

than false-negative errors. 

Alternatively, the physicists’ choice of very strict thresh-

old values can be viewed as an attempt to define physical 

“truth”. That is, if the measure of the weight of evidence sat-

isfies the very strict threshold value, then the effect observed 

is viewed as truly occurring. This is sensible because if phys-

icists use this approach, then (assuming everything is done 

properly, and by the laws of probability) they will virtually 

never make false-positive errors. 

Though the choice of the threshold p-value for a journal is 

somewhat arbitrary, it is still sensible for a journal to choose 

and enforce its best estimate of the optimal threshold value 

because this gets things approximately right and, as noted 

above in Appendix F, the threshold-value gateway is fair, fast, 

and theoretically optimal.  

Based on that, the choice of the actual threshold p-value 

used by a journal, while still based on experience, intuition, 

and norms, may also be determined somewhat by the prestige 

of the journal. A more prestigious journal can use a strict 

threshold p-value of 0.01, which enables the journal to reduce 
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its false-positive publication rate but still get a good number 

of qualified submitted papers. A journal wishes to reduce its 

false-positive publication rate because published false-posi-

tive errors (though inevitable) are somewhat embarrassing 

and scientifically costly. Of course, as noted in section 6 of 

the body of this paper, using a lower threshold p-value also 

increases the rate of false-negative errors that are incorrectly 

omitted from consideration by the journal, and these errors are 

also costly. But false-negative errors are invisible, so they re-

ceive less attention.  

Although a more prestigious journal can use a threshold 

p-value of 0.01, a more progressive journal, whether prestig-

ious or not, may choose 0.05 to cast a wider net for interesting 

results. A less prestigious journal will typically need to use a 

threshold p-value of 0.05 to get enough qualified submitted 

papers. 

Appendix L: Reducing the Misuse of p-Values 

Arguably, the problem of the misuse of p-values can be re-

duced or even eliminated by improving the training of empir-

ical researchers. This is because proper training will show re-

searchers that misusing p-values is harmful to their reputa-

tions. That is, if a researcher publishes a false-positive result 

(whether due to misuse of p-values or not) and if the result is 

important, then other researchers will try to use or extend the 

false result. And because the original result is a false-positive 

result, these researchers will fail, and the failures will be 

known in the scientific community, and the failures will be 

harmful to the original researcher’s reputation. So, research-

ers who understand the use of p-values are careful to use them 

properly because that is best for science and best for their rep-

utations.  

For teaching data-analysis concepts and procedures to stu-

dents who aren’t majoring or minoring in statistics or data sci-

ence, I recommend that teachers focus on the proper use of 

data-analysis concepts and the underlying scientific concepts. 

I also recommend deemphasizing the associated mathematics. 

This is because the math can be efficiently handled by a com-

puter if the student properly understands the scientific con-

cepts. Of course, for students who are majoring or minoring 

in statistics or data science, the math is fundamental but, for 

other students, the scientific concepts are more important and 

therefore deserve the focus.  

For students who aren’t majoring or minoring in statistics 

or data science, I recommend that teachers introduce students 

to the following topics, discussing each topic to a depth that 

is consistent with the students’ abilities and consistent with 

the available time: 

• the basic ideas of entities, properties of entities, and varia-

bles in human reality 

• the ideas of summarizing the values of variables for the en-

tities in a sample with dot plots, bar charts, and histograms  

• relationships between variables in human reality and in sci-

entific research, including the idea of the response variable 

and the predictor variable(s) and the idea of summarizing 

relationships with scatterplots, line graphs, multi-variable 

bar charts, and contingency tables 

• the idea of the empirical study of a relationship between 

variables to achieve reliable prediction, control, and under-

standing 

• the distinction between observational and experimental re-

search 

• how to read an empirical-research paper looking for weak-

nesses in the research design and weaknesses in the logic 

and how to identify and summarize the relationships be-

tween variables discussed in a paper 

• how to design an observational empirical-research study 

with maximum statistical power under the available re-

sources 

• how to design an experimental empirical-research study 

with maximum statistical power under the available re-

sources 

• how to focus during the design phase of a research study on 

eliminating the possibility of reasonable alternative expla-

nations arising of the results 

• how to conduct the physical aspects of an empirical-re-

search study 

• how to analyze and interpret the results of a study, includ-

ing discussion of interpreting the computer output and 

checking whether the assumptions underlying the statistical 

procedures are adequately satisfied, and  

• how to write a research paper reporting the results of a 

study.  

Note that it isn’t necessary to cover any of the preceding top-

ics in great depth, only enough depth to enable students to un-

derstand the main ideas. However, it is recommended that all 

the topics be covered because they are all helpful to under-

stand scientific research. The details behind the ideas can 

come in later courses after the students have a proper over-

view of the main ideas. Researchers and students are eager to 

learn the high-level ideas of empirical research because 

proper knowledge increases the researcher’s chance of suc-

cessfully publishing research papers and thereby advancing 

their careers. 

It is important to carefully study examples of computer 

output from data analyses because that helps students to un-

derstand a key step of scientific research. However, I recom-

mend that there be no training in data-analysis computer pro-

gramming in an introductory course for students who aren’t 

majoring or minoring in statistics or data science. This is be-

cause programming takes a large block of time and there are 

other more important topics.  

Using proper research design and proper data-analysis 

methods to study relationships between variables is invalua-

ble in all branches of science. If teachers can tightly link the 

statistics and data-science ideas directly to empirical research, 

then this inclusive approach will help our field to assume its 

natural leadership role in methods for analyzing and interpret-

ing the data obtained in empirical research. If we can teach 

students to use the general ideas of science, with proper 
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coverage of the useful ideas of statistics and data science, we 

maximize our contribution to society. 

Appendix M: A Proof that the Optimal Threshold p-
Value for a Scientific Journal Exists and Is Unique 

M.1 Introduction.  

The body of this paper says that if a scientific journal uses the 

optimal threshold p-value as a gateway to publication for em-

pirical-research papers, then this will help to maximize the 

scientific and social benefit of the papers that are published or 

are refused publication in the journal. This appendix gives a 

formal economics argument to show how the optimal thresh-

old p-value for a journal exists and is unique to each journal.  

The argument consists of an extended thought experiment 

in which we pretend that we know certain things that we don’t 

know. The thought experiment uses ideas developed by Ioan-

nidis (2005), Tabarrok (2005), Jager and Leek (2014), and 

Miller and Ulrich (2019). We will see how the thought exper-

iment reveals new facts. 

The argument is developed using the p-value as the meas-

ure of the weight of evidence. However, an equivalent argu-

ment could be developed using any other standard measure of 

the weight of evidence, such as the confidence interval or the 

Bayes factor. Using another measure would lead to the same 

conclusion as under the p-value approach—the optimal 

threshold value for the measure for the journal exists and is 

unique. (For some of the measures of the weight of evidence, 

the optimal value may also depend somewhat on other factors, 

such as the sample size or the choice of the “prior” distribu-

tion.) Though we don’t demonstrate it here, when things are 

done properly, if the optimal threshold value for a journal is 

chosen for any of the measures, it will behave in the same way 

in selecting or rejecting papers as the optimal values for the 

journal for any of the other measures. This is due to the mon-

otonic relationships between the measures. 

We first consider the thought experiment graphically to 

illustrate the logic. We then follow with a mathematical dis-

cussion of the simple ideas behind the graphs.  

Consider a group of 1000 randomly selected independent 

research studies in some field of empirical research that will 

be submitted to a particular journal (say, Journal A) in the 

field if they find good evidence of the relationship between 

variables they are looking for. That is, the report of each of 

these studies will be submitted to Journal A if the computed 

p-value for the main statistical test in the study is less than (or 

equal to) Journal A’s threshold p-value of, say, 0.05.  

From the perspective of a researcher, these 1000 research 

studies can be broken into two groups: (a) the group of studies 

with a positive result for the main statistical test (i.e., p ≤ 

0.05), which will be submitted to Journal A and (b) the group 

of studies with a negative result for the main test (i.e., p > 

0.05), which won’t be submitted to the journal (because they 

would be rejected).  

From our theoretical perspective we can break the positive 

results into two subgroups—the true-positive results and the 

false-positive results. Similarly, we can break the negative re-

sults into two subgroups—the true-negative results and the 

false-negative results. 

Based on sensible assumptions, the following discussion 

develops a mathematical model of the occurrence of the four 

types of results in the 1000 research studies that are candidates 

for Journal A. We model the rates of occurrence of the four 

types of results as a function of the threshold p-value used by 

the journal. We include cost considerations in the model, tak-

ing direct account of the scientific and social costs of false-

positive and false-negative errors. We use the model to 

demonstrate that a particular choice of the threshold p-value 

minimizes the total cost of the errors, which helps to maxim-

ize the scientific and social benefit of the papers published in 

the journal.  

The argument demonstrates the existence of the optimal 

threshold p-value for Journal A though the argument can’t tell 

us the threshold’s numeric value.  

M.2. Graphical Version of the Argument 

 
Figure M.1. The published false-positive error rate ver-

sus the threshold p-value for Journal A. Prop. = Propor-

tion; FP = false-positive. 

Figure M.1 shows, for Journal A, based on certain as-

sumptions that are discussed below, the theoretical population 

rate of false-positive errors published by the journal as a func-

tion of the threshold p-value that is used by the journal. The 

horizontal axis of the graph shows a range of different possi-

ble choices for the threshold p-value between 0.01 at the left 

end and 0.3 at the right end. The axis uses a logarithmic scale 

to sensibly stretch things out at the lower end.  

The vertical axis of the graph shows the proportion of the 

1000 research studies in the field whose results are false-pos-

itive errors and are published in the journal. The red line on 

the graph shows that proportion for the different threshold p-

values. For example, the light gray lines on the graph tell us 
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that if Journal A uses a threshold p-value of 0.05, then the 

published false-positive error rate will be roughly 0.03 or 30 

of the 1000 research studies. 

The red line shows that if the journal uses a higher thresh-

old p-value, then the rate of publication of false-positive er-

rors will be higher. 

Note that the false-positive errors shown on the graph are 

false-positive errors that are due to chance. These false-posi-

tive errors occur because in all fields of empirical research a 

significant percentage of the research hypotheses are false. 

And in the cases when the research hypothesis is false, the 

statistical tests will sometimes make false-positive errors. 

Thus, for example, if the threshold p-value for a journal is 

0.05, then in cases when the research hypothesis is false (i.e., 

the null hypothesis is true or at least in effect true), false-pos-

itive errors will theoretically occur roughly 5% of the time.  

Note how the error rates implied by the graph are always 

somewhat lower than the corresponding threshold p-values. 

The mathematical discussion below explains this phenome-

non. 

Of course, in real scientific research there is a second 

source of false-positive errors, which is errors that researchers 

sometimes make in performing their research, which some-

times lead to false-positive errors. We are ignoring the re-

searcher-caused false-positive errors in the present discus-

sion. If we were somehow able to know the rate of the re-

searcher-caused false-positive errors, we could modify the 

graph to take account of these errors, which would cause the 

red line to be higher on the graph. That would have no effect 

on the main argument under discussion. 

Unfortunately, it isn’t possible to empirically derive the 

correct version of figure M.1 for a scientific journal. This is 

because, as a practical matter, we can’t measure the rates of 

the false-positive errors in a journal under different threshold 

p-values. So, we can’t know the exact shape or position of the 

red line on the graph. However, we can model the line using 

mathematical principles and using reasoned guesses for the 

line’s parameters, as discussed below. 

We do know definitely that the red line monotonically in-

creases as the journal’s threshold p-value increases because 

the relatively-easy-to-understand theory of the p-value tells us 

that (assuming everything is done properly) the rate of false-

positive errors made by a journal is in a monotonic increasing 

relationship with the journal’s choice of the threshold p-value. 

This is because the higher the journal sets the threshold p-

value, the more lenient the threshold is in allowing papers 

with weak evidence to be accepted for consideration. Papers 

with weak evidence are more likely to be intermixed with pa-

pers that are reporting false-positive errors. This is because 

false-positive errors are more likely if the threshold for a pos-

itive result is lenient and thus the threshold is easy to get past. 

Since more papers with weak evidence will be accepted for 

consideration, therefore more papers that are reporting false-

positive errors will be accepted for consideration. 

As noted in section 5.1 in the body of this paper, due to 

the complexity of empirical research, editors and referees 

generally can’t reliably distinguish between true positive re-

sults and false positive results, so they generally don’t try. 

Therefore, if a journal uses a higher threshold p-value, then 

since proportionately more papers with false-positive errors 

will be accepted for consideration, therefore proportionately 

more papers with false-positive errors will be published. 

Therefore, the false-positive error rate of papers published in 

a scientific journal is an increasing monotonic function of the 

threshold p-value used by the journal, as shown in figure M.1. 

 
Figure M.2. The false-negative error rate versus the 

threshold p-value for Journal A. FN = false-negative. 

Figure M.2 shows, for Journal A, based on assumptions 

discussed below, the theoretical rate of false-negative errors 

committed by the journal as a function of the threshold p-

value used by the journal. That is, the horizontal axis is the 

same set of values of the threshold p-value as in figure M.1 

and the vertical axis is also the same, reporting the theoretical 

proportion of errors (false-negative errors in this case) in the 

1000 research studies for the different threshold p-values.  

The green line on figure M.2 tells us that the proportion of 

the 1000 research studies that are reporting about real (i.e., 

extant and with non-trivial effect size) relationships between 

variables that were or might have been submitted to the jour-

nal and that were or would have been wrongly rejected be-

cause they failed to satisfy the threshold-p-value rule. For ex-

ample, the light gray lines on the graph tell us that if Journal 

A uses a threshold p-value of 0.05, then the rate of false-neg-

ative errors that will wrongly be unpublished in the journal 

will be roughly 0.06 or 60 of the 1000 research studies.  

The green line shows that if the journal uses a higher 

threshold p-value, then the rate of incorrect rejections of real 

relationships (i.e., the rate of false-negative errors) will be 

lower. 

As with figure M.1, the green line shows false-negative 

errors that are due to chance, and false-negative errors due to 

researcher errors are ignored. If we were somehow able to 
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know the rate of the researcher-caused false-negative errors, 

we could modify the graph to take account of that, which 

would cause the green line to be higher on the graph. As with 

figure M.1, that would have no effect on the main argument 

under discussion. 

As with figure M.1, we can’t empirically derive the cor-

rect version of figure M.2 for a scientific journal because, as 

a practical matter, we can’t measure the rates of false-negative 

errors under different threshold p-values. So, as with the red 

line in figure M.1, we can’t know the exact shape or position 

of the green line on the graph for a journal. However, as with 

figure M.1, we can model the line mathematically. 

Similarly to figure M.1, we know from theory that the 

green line in figure M.2 monotonically decreases as the 

threshold p-value increases. This is because, as noted, a 

higher threshold p-value is more lenient, which allows more 

true but weak results to be accepted for consideration for pub-

lication, which will reduce the rate of false-negative errors the 

journal makes. Therefore, the false-negative error rate of pa-

pers refused for consideration for publication in a journal is a 

decreasing monotonic function of the threshold p-value used 

by the journal, as shown in figure M.2. 

 
Figure M.3. Figures M.1 and M.2 overlaid. 

It is helpful to plot the red and green lines on figures M.1 

and M.2 overlaid on a single graph, which yields figure M.3. 

Overlaying the lines is sensible because both lines pertain to 

the same 1000 research studies.  

A key idea associated with figure M.3 is that the false-

positive and false-negative errors shown by the two lines on 

the figure have scientific and social costs associated with 

them. That is, every false-positive error has a cost in terms of 

wasted resources that are used to try to replicate or use the 

false result, with every individual error having a (differing) 

cost. Similarly, every false-negative error has a scientific and 

social cost in terms of lost information about a new and pos-

sibly useful relationship between variables, again with every 

error having a (differing) cost. For technical reasons, we can’t 

measure the error costs, but we do know that if the rates of 

false-positive or false-negative errors go up, then the total cost 

of these errors obviously also goes up. 

However, since we are performing a thought experiment, 

let us suppose that we can measure the costs of both false-

positive and false-negative errors in Journal A. This will al-

low us to convert the error lines on figure M.3 into cost lines, 

as shown on figure M.4. 

 
Figure M.4. The costs of false-positive and false-nega-

tive errors versus the threshold p-value for Journal A. 

Note how the vertical axis label on figure M.4 isn’t “Error 

rate” but is “Cost,” though the numbers on the axis are un-

changed. This is because this discussion is hypothetical, so we 

can view the numbers on the Cost axis as merely a relative 

scale. This scale has a true zero because if there were no er-

rors, there would be no associated error costs. 

Reflecting the simplest case, the two cost lines on figure 

M.4 have the same shapes as the two associated error lines on 

figure M.3. This is because it is sensible to assume that the 

overall scientific and social cost of each type of error is di-

rectly proportional to the rate of occurrence of that type of 

error. Figure M.4 shows this simple case.  

However, if we believe that the costs of the errors are more 

complicated than direct proportions or if we believe that the 

cost of a false-positive error is different from the cost of a 

false-negative error, then we could adjust the lines on figure 

M.4 to take account of those beliefs. That would be relatively 

easy to do if we knew the correct lines and if we knew the 

correct costs, which in this thought experiment we assume we 

know. These adjustments would change the relative positions 

of the red and green lines on the graph, but they wouldn’t 

change the fact that the two lines cross on the graph in the 

form of a curving X, which is the important point for the pre-

sent discussion. 

So, after we have made any necessary adjustments to fig-

ure M.4 to make it reflect the proper costs, we can add to-

gether the two costs at individual threshold p-values on the 

horizontal axis, which gives us the total cost of the false-pos-

itive and false-negative errors for each threshold p-value. 
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(This addition is permissible because the original two error 

proportions behind the cost lines were computed based on all 

the research studies in the same relevant group of 1000 re-

search studies that might be submitted to Journal A.) Then we 

can plot the sum of the costs of the two types of errors on the 

graph. The curving black line on figure M.5 shows the sum of 

the costs of the two types of errors. 

 
Figure M.5. Figure M.4 with a black line added showing 

the sum of the costs of the two types of errors versus the 

threshold p-value for Journal A. 

In figure M.5, either with a ruler or with measurement by 

eye, it is easy to see that the height of any point on the curving 

black line on the figure is the sum of the heights (above the 

horizontal zero line) of the red and green lines at points that 

are vertically directly below the point on the black line. For 

example, if you carefully measure the vertical heights of the 

red, green, and black lines at 0.05 on the horizontal axis, you 

will see that the height of the black line is exactly equal to the 

sum of the heights of the red and green lines. 

Of course, the black line shows the theoretical “loss func-

tion” that is discussed in section 8 of the body of this paper. 

Note how the black line is shaped like a bowl. The bowl 

has, in effect, “fallen into” the notch between the two cost 

lines. Of course, the lowest point on the bowl is the point 

where the sum of the costs of the two types of errors has the 

lowest possible value. 

 
Figure M.6. Determining the optimal threshold p-value 

for Journal A. 

Figure M.6 shows the step of drawing a vertical arrow 

from the lowest point on the bowl to the horizontal axis to 

identify the optimal threshold p-value for the journal—the 

value that gives us the lowest sum of the costs of the two types 

of errors. Thus, on the figure, we see that the optimal thresh-

old p-value for hypothetical Journal A is around 0.06. 

Note how the bowl is somewhat flat in the vicinity of the 

lowest point, so one could argue that the optimal value is 

somewhat indeterminate. That argument would be reasonable 

if we were considering the empirical optimal value—i.e., if 

we had somehow obtained figure M.6 empirically—because 

then the black line on the graph would be subject to measure-

ment error, which would likely make the minimum point dif-

ficult to identify, so the chosen point would likely be some-

what arbitrary.  

However, that argument doesn’t apply in the present the-

oretical case because in our thought experiment the theoreti-

cal exact optimal value is, of course, the exact lowest point on 

the bowl which, due to the geometry of the situation, exists 

and is unique (though we can’t know the value numerically). 

Appendix K above discusses how the actual threshold p-value 

chosen by a journal is somewhat arbitrary.  

The optimal threshold p-value is unique to each journal 

because different journals will generally have different false-

positive and false-negative error cost lines. Therefore, differ-

ent journals will have different black lines representing the 

sum of the costs with different minimum points leading to dif-

ferent optimal threshold values. 

Figure M.6 shouldn’t be interpreted as suggesting that the 

optimal threshold p-value for a journal is roughly 0.05. This 

is because it is easy to move the minimum point of the bowl 

on the figure far to the left or far to the right by changing the 

values of the parameters of the algorithm that generates the 

figure, as explained below. Instead, the figure illustrates how 

things work and illustrates that the theoretical optimal thresh-

old p-value for Journal A exists, as defined by the point on the 
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horizontal axis where the vertical arrow dropping from the 

lowest point on the bowl points. 

M.3. Mathematical Version of the Argument for Figure M.1 

For some readers, the graphical argument in the preceding 

section may be enough to convince them that the optimal 

threshold p-value for a journal exists. However, it is useful for 

further understanding to consider a mathematical version of 

the argument. We consider the math in terms of the computer 

program that generates the data to draw figures M.1–M.6 be-

cause the program precisely specifies the math. 

The program is written in the SAS programming language 

though you needn’t understand that language to understand 

the following discussion. The program can be readily con-

verted to any other standard programming language (assum-

ing the language can provide the needed simple statistical 

functions) and it will give exactly the same red, green, and 

black lines on the graphs. 

In SAS, if we wish to generate or manipulate data, we use 

a DATA step, which consists of multiple lines of SAS code. 

The first line in a DATA step is a DATA statement that indi-

cates the beginning of the step and names the data set that we 

will generate—we will name our data set “GraphData”. Here 

is the statement: 

data GraphData; 

Next, we set the values of five variables that the program will 

use when it is run. We can later change these values and then 

rerun the program to study the behavior of the program under 

different conditions. We use a RETAIN statement to tell SAS 

to “retain” the values over consecutive “passes” through the 

DATA step because otherwise SAS will (sensibly) set the val-

ues to “missing” at the beginning of each pass: 

retain PctTrue 30 PosPctPub 90 ntotal 60 

meandiff 20 stddev 27; 

We discuss the meaning and use of the values of the preceding 

five variables in due time below. 

Figures M.1–M.6 all have the same range of threshold p-

values on the horizontal axis, running between 0.01 and 0.3. 

So, to draw the figures, we must generate data at different 

threshold p-values between 0.01 and 0.3. We do this with a 

“DO loop” in the program, which is a set of multiple SAS 

statements in a DATA step and which, in the present case, 

begins with the following statement: 

do ThreshP = 0.01 to 0.3 by 0.001; 

This statement tells SAS to execute the statements that follow 

the DO statement down to a matching END statement once 

for every value of ThreshP between 0.01 and 0.03 (inclusive) 

using the increment of 0.001 to step between values. Of 

course, each time SAS executes the statements, the variable 

ThreshP will have the appropriate value and will be available 

for use in the computations. 

As noted, we assume we are studying 1000 research stud-

ies in some field of empirical research that might be submitted 

to Journal A. Each of these studies is studying a relationship 

between variables. As specified in the variable PctTrue in the 

RETAIN statement, we assume that 30% of the research stud-

ies are studying a true relationship between variables—that is, 

the research hypothesis that is under study is true. Thus, the 

other 70% of the research studies are, unfortunately for the 

associated researchers, studying a situation in which the pos-

tulated relationship between the variables doesn’t detectably 

exist in the studied population—that is, the null hypothesis is 

true (or is in effect true, as discussed in Appendix B).  

The estimate that only 30% of the research studies in a 

field of science are studying true relationships between varia-

bles may seem low to some readers, but it likely won’t seem 

low to researchers who do day-to-day research. These re-

searchers know that many research studies are performed that 

yield negative results, so the studies are abandoned, and noth-

ing is said or written about them because they are uninterest-

ing relative to positive results. And the negative results are 

slightly embarrassing because they “failed” to find the rela-

tionship between variables or other effect that the researcher 

thought was likely present. 

Some authors suggest that the rate of true research hypoth-

eses in psychological research may be as low as 10% (Miller 

and Ulrich 2016, p. 685; Johnson et al. 2017, abstract). 

For readers who think 30% may be too low or too high, if 

we rerun the present program with PctTrue set at, say, 60% or 

at, say, 10% instead of 30%, the program will produce a some-

what different version of figure M.6, but there will be no 

change to the general bowl pattern of the black line on the 

graph and no changes to the key points implied by the graph. 

As noted, we are working with 1000 research studies, with 

each study studying a possible relationship between variables. 

Consider the following two lines of code that immediately fol-

low the DO statement: 

nTrueRels = 1000 * (PctTrue / 100); 

nFalseRels = 1000 - nTrueRels; 

The first line tells us how many true relationships between the 

variables we have in the 1000 research studies. For example, 

if PctTrue is 30, then we will have 300 true relationships and, 

as computed in the second line, we will have 700 false rela-

tionships. 

The next line of code tells us how many of the 1000 results 

will be false-positive results according to the current value of 

the threshold p-value: 

nFalsePos = ThreshP * nFalseRels; 

The preceding line of code is correct based on the definitions 

of the p-value and the threshold p-value. By definition, the 

threshold p-value for a journal is roughly the fraction of the 

time that the p-value for the main result in a paper submitted 

to the journal will be less than the journal’s threshold p-value 

in the set of cases when there is no relationship (or no 
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detectable relationship) between the variables in the popula-

tion (and if certain often-satisfied assumptions are adequately 

satisfied). So, if we have 700 cases of no relationship between 

the studied variables, and if everything is done properly, then 

the number of these cases in which the p-value will be less 

than the threshold p-value of 0.05 is estimated as 0.05 × 700 

= 35.  

Since the 35 cases of false-positive results have p-values 

less the journal’s threshold p-value, and because researchers 

are almost always unaware that a positive result is a false-pos-

itive result, and because researchers are eager to have their 

research papers published, we can assume that the 35 studies 

containing the false-positive results will be submitted to Jour-

nal A. However, not all positive results submitted to a reputa-

ble scientific journal are published because journals have 

other standards that a paper must satisfy in addition to the 

threshold-p-value standard. We assume that the percentage of 

positive results submitted to Journal A that are published is 

specified in the variable PosPctPub, as given in the RETAIN 

statement above. Therefore, the number of false-positive re-

sults that are published in Journal A is computed as 

nFalsePosPub = nFalsePos * (PosPctPub / 

100); 

For example, if PosPctPub is 90 (as specified in the RETAIN 

statement), and if 35 false-positive results are submitted to the 

journal, then 35 × 0.9 or roughly 32 of them will be published. 

The two gray lines on figure M.1 reflect this case in terms of 

an 0.032 proportion of the 1000 studies. 

Now, working with 1000 research studies was an assump-

tion to make things easier to understand, but this assumption 

is restrictive and unnecessary, so we can change from the 

count of the research studies with false-positive errors to a 

more general proportion with the following line of code: 

PropFalsePosPub = nFalsePosPub / 1000; 

At this point, the program has generated a single line of data 

of the multiple lines of data that we need to draw figure M.1. 

Of course, the two variables in the data line that we need to 

draw the figure are ThreshP (plotted on the horizontal axis of 

the graph) and PropFalsePosPub (plotted on the vertical axis). 

The next line of code tells SAS to write the values of all 

the variables in the line of data into a new row of data in the 

GraphData data set that is being created: 

output; 

We end the DO loop at this point with the following state-

ment: 

end; 

The END statement tells SAS to go back to the DO statement 

above and execute the lines of code in the loop again, using 

the next value of ThreshP (unless, of course, ThreshP has 

passed 0.3). This will write the next row of data into the data 

set, and so on until all the rows of data are written. If we run 

the program, SAS tells us in the “log” of the run that it wrote 

291 rows of data into the GraphData data set, which is the 

correct number given the specifications of the DO statement 

above. 

As noted, the 291 values of ThreshP and PropFalsePosPub 

in the GraphData data set are the values we need to draw fig-

ure M.1. Thus, we need only give the GraphData data set to a 

graph-plotting program and give it a few simple instructions 

and it will draw figure M.1. 

(The program to generate the data, including the code to 

draw the six figures and the PDF output from the program, is 

available in the Supplementary Information for this paper. For 

interested readers, instructions in the Supplementary Infor-

mation explain how to run the program using free online SAS 

software and how to change the values of the parameters in 

the RETAIN statement to see what happens if you do that.) 

It is important to distinguish between  

• the proportion of research studies in a field that are report-

ing false-positive errors and that are published in a journal 

and  

• the proportion of research studies that are published in a 

journal that are reporting false-positive errors.  

It is the first of the above two proportions that is plotted on 

the vertical axis of figure M.1. The second proportion, which 

is directly related to the first, is always higher than the first 

due to the underlying mathematics and because (with rare ex-

ceptions) only positive research results are published in sci-

entific journals. The second proportion is discussed appendix 

D above. 

M.4. Mathematical Version of the Argument for Figure M.2 

Let us now add code to the program to generate the data for 

figure M.2, which we do by adding six more lines of code to 

the program, adding the lines immediately before the OUT-

PUT statement. These lines generate a new variable, 

PropFalseNeg, which tells us the proportion of research re-

sults in the field that are false-negative results as a function of 

the threshold p-value. The values of the PropFalseNeg varia-

ble together with the values of the ThreshP variable are the 

data behind figure M.2. 

As with figure M.1, in generating the data for figure M.2, 

we begin by working with 1000 research studies that might be 

submitted to Journal A because this point of view is easy to 

understand. However, in this case, the 1000 research studies 

are quite different from the 1000 research studies in figure 

M.1. In generating figure M.1, we considered 1000 different 

research studies. To generate figure M.2, we consider the case 

in which we repeat exactly the same research study 1000 

times, each time collecting data from a fresh sample of entities 

from the (same) studied population. The sensibility of this ap-

proach will become clear later below. 

For a simple concrete example, consider the study of a re-

lationship between a “binary” predictor variable and a “con-

tinuous” response variable. For example, suppose we are 

medical researchers, and we wish to test whether a new blood-
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pressure drug lowers the blood pressure in patients with high 

blood pressure.  

Because it is efficient, we decide to use two doses of the 

drug in our experiment, which are a zero dose and a high but 

safe dose. So (using a placebo and appropriate medical 

“blinding”), we randomly assign the two doses to suitable vol-

unteer patients and, after sufficient time for the drug to show 

an effect, we measure the drop in each patient’s blood pres-

sure from before the patient received the drug or placebo until 

after they have received it. Of course, we wish to know 

whether the high dose of the drug yields a significant change 

in the response variable—i.e., a significant drop in each pa-

tient’s blood pressure in the patients who received the drug 

relative to the patients who received the placebo.  

So, we compare the average drop in blood pressure in the 

patients who received the drug with the average drop (if any) 

in the patients who received the placebo. In this case, the ac-

cepted way to compute the relevant p-value is with the “two-

sample t-test,” which is briefly discussed above in appendix I 

and which is the most powerful standard statistical test for ev-

idence of a relationship between a binary predictor variable 

(e.g., drug dose with two levels) and a continuous response 

variable (e.g., drop in blood pressure).  

The two-sample t-test is applicable if certain often-satis-

fied assumptions are adequately satisfied, which we assume 

are satisfied in the thought experiment. For completeness, it 

is noteworthy that we could also compute the p-value using 

the “before” and “after” blood pressures for each patient and 

testing for an interaction between Time and Treatment in a 

repeated measurements analysis of variance, but this would 

give us exactly the same p-value.  

We assume that each of our 1000 research studies com-

pares two groups of 30 patients for a total of 60 patients—30 

patients receiving the drug and 30 receiving the placebo. Each 

study uses exactly the same procedures and then performs a 

two-sample t-test for the difference in the drop in blood pres-

sure between the two groups. The only difference between the 

studies is that in each study we obtain a fresh random sample 

of patients from the population.  

We also assume that we know the correct values of the 

parameters of the relationship between the two variables, as 

follows: We assume that the blood-pressure drug is effective 

in 300 of the cases (as dictated by PctTrue), and in these cases 

the population mean difference of the response variable be-

tween the two groups under consideration is 20 units (e.g., 

millimeters of mercury), and the population common group 

standard deviation is 27 units. In the other 700 cases, we as-

sume that there is no relationship between the two variables, 

so the population mean difference between the two groups is 

zero. 

So, let us add code to the program to simulate this very 

specific case, which we use to provide a graphical approxima-

tion of the general case. (We generalize the approximation 

later below.) In adding the code, we can use the fact that the 

key numbers in the preceding three paragraphs (i.e., 60, 30, 

20, and 27) are all known to the program because they are all 

given in the RETAIN statement above. 

In this specific situation, to draw the false-negative-error 

line on figure M.2, we need to determine how many of the 

1000 instances of the two-sample t-test will be false-negative 

errors. So, we need to count the instances among the 300 cases 

in which the relationship exists, but the research study fails to 

detect the relationship—i.e., the computed p-value is greater 

than the threshold p-value, which implies a false-negative er-

ror. We will do this counting in a moment after some neces-

sary preliminary points. 

(Of course, the researcher is generally unaware that a cer-

tain negative result is a false-negative result because there is 

generally no way to know that apart from doing appropriate 

further research.) 

In generating figure M.2, we must also take account of the 

strength of the relationship between the variables because if a 

relationship is weak, then a false-negative error is more likely 

to occur than if the relationship is strong. In the t-test case that 

we are studying, we know the strength of the relationship 

from the information given above, and the strength is the same 

in every one of the 300 positive cases because we are doing 

exactly the same research studying exactly the same relation-

ship between variables in the same population in every case. 

Of course, this greatly simplifies taking account of the 

strength, which is why we have used the approach. In general, 

though, the strength of the relationship between variables un-

der study varies from one research study to the next, so we 

must take account of that fact, which we do later below. 

The strength of the relationship between variables we are 

expecting to find in the t-test example is encapsulated in the 

two parameters of the relationship, with values 20 and 27. Of 

course, we usually don’t know the values of the parameters 

for a relationship between variables in advance, but we as-

sume we know them in our thought experiment. Since we 

know the strength of the relationship, this enables us to com-

pute the “power” of the statistical test in the 1000 research 

studies. We will use the measured power as a key to drawing 

figure M.2. But first we explain the concept of statistical 

power for readers who may be unfamiliar with it. 

The “power” of a statistical test is the fraction of the time 

that the test will detect the studied relationship between the 

variables if certain sensible conditions are satisfied. The con-

ditions are that  

• we specify the form of the relationship between the varia-

bles in a way that enables us to compute the power (as we 

have done in the t-test example) 

• we specify the design of the research study (as we have 

done in the t-test example) 

• we use a particular specified threshold p-value, such as 

0.05, and  

• everything is done according to certain sensible rules, as 

explained in statistics and data science textbooks.  

We assume that the four conditions are satisfied in our 1000 

research studies though we won’t use a single threshold p-
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value but will instead perform the computation with each of 

the 291 different threshold p-values to enable us to generate 

figure M.2. 

Since statistical power is the fraction of the time that a re-

search study will detect the specified relationship between the 

variables, the power of a statistical test for detecting a rela-

tionship always lies between 0 and 1 (just like the values of 

the p-value always lie between 0 and 1). Ideally, a statistical 

test in an empirical-research study should have a power of at 

least 0.8 for the relationship between variables that it hopes to 

detect because that gives the research study a good chance of 

detecting the relationship if the relationship is present in the 

population. That is, if a research study has a power of 0.8, then 

it will successfully detect the relationship 0.8 of the time that 

the study is performed if the relationship has the form speci-

fied in the power computations. 

An obvious question a reader might ask here is why re-

searchers don’t design research studies with a power of, say, 

0.99 or even 1.0. The answer is that sensibly performing a re-

search study with such high power would be very expensive, 

so the researcher must always trade statistical power against 

research cost. In view of this trade-off, statisticians and data 

scientists have invented research designs that can substan-

tially increase the power of statistical tests while only mini-

mally increasing the costs. 

We can compute the power of a statistical test using the 

standard theory of statistical power, which is straightforward 

though somewhat complicated in the mathematical details. 

Fortunately, we needn’t consider the math because a com-

puter can look after that. Instead, we need only note that 

power is the fraction of the time that the research study will 

detect the specified relationship under the specified condi-

tions, as discussed above. We will use this key fact in a mo-

ment after we briefly explain the high-level steps to compute 

power. 

To compute the power of a statistical test, we substitute 

the values of the parameters of the model equation of the re-

lationship and the required specifications of the research de-

sign into the appropriate power equations and then the com-

puter evaluates the equations to determine the power. Power 

equations to do this computation are derived in statistics text-

books about power and are available for all the standard sta-

tistical tests of relationships between variables. Many general 

data-analysis software systems contain preprogrammed rou-

tines with power equations that can compute statistical power 

for a variety of standard research designs. 

So, in the present example, we use the variable meandiff 

to tell the statistical power equations that in the 300 positive 

cases the population mean difference between the two groups 

in the t-test is 20 units, we use stddev to specify that the pop-

ulation common group standard deviation is 27 units, we use 

ntotal to tell the equations the total number of entities in the 

two groups is 60, and we use ThreshP to specify the threshold 

p-value that is currently under consideration in the DO loop. 

Then the power equations ingest these numbers and determine 

the power. For example, if we use the numbers above and if 

the threshold p-value under consideration is 0.05, then the 

power equations for the two-sample t-test tell us that the 

power of this statistical test is roughly 0.805 if the relationship 

has or were to have the specified mean difference and stand-

ard deviation. 

Here are the highly obtuse three lines of SAS code that we 

add to the program to specify the power equations to compute 

the power of the two-sample t-test under the specified condi-

tions:  

Ncp = ntotal * 0.5 * 0.5 * meandiff**2 / 

stddev**2; 

Critval = finv(1-ThreshP, 1, ntotal-2, 

0); 

TestPower = sdf('f', Critval, 1, ntotal-

2, Ncp); 

You needn’t understand the preceding three lines, and you 

need only understand that the third line properly assigns the 

power of the test in the situation under study to the TestPower 

variable according to the current value of ThreshP in the DO 

loop. However, for readers who are curious, the three lines of 

code are copied from a web page about computing the power 

of the two-sample t-test published by SAS Institute (2021), 

with links to further references to standard theoretical discus-

sions of statistical power. 

In the present discussion, we view the above three lines as 

a black box that correctly computes the power of the two-sam-

ple t-test if we give the three lines the values of all the varia-

bles that appear on the right-hand side of the equals signs in 

the three lines. 

So, if we execute the preceding three lines of code (using 

the values of ntotal, meandiff, stddev, and the current value of 

ThreshP), we obtain the value of TestPower, which we use to 

help to draw figure M.2. In particular, using TestPower, we 

can compute the number of true positive results in the 1000 

research studies for the current value of ThreshP by multiply-

ing the number of true relationships (computed earlier) by the 

power, as follows: 

nTruePos = TestPower * nTrueRels; 

For example, if the number of true relationships is 300, and if 

the threshold p-value is 0.05, then, as noted, the power equa-

tions tell us that the power is approximately 0.805. In this 

case, the estimated number of true positive results will be 300 

× 0.805, which is roughly 242. Then we can compute the 

number of false-negative results as 

nFalseNeg = nTrueRels - nTruePos; 

Thus, if we have 242 true positive results then we will have 

300 − 242 = 58 false-negative results in the 1000 research 

studies. The two gray lines on figure M.2 reflect this case in 

terms of an 0.058 proportion of the 1000 studies. 

Finally, we convert the count of research studies with 

false-negative results to a proportion as 



The Optimal Threshold p-Value for a Scientific Journal—Appendices 25. 

 

PropFalseNeg = nFalseNeg / 1000; 

This completes the code to compute the data needed to draw 

figure M.2. Note the relative simplicity of the computation. 

We discuss the generalization of the figure in a moment. 

M.5. Generating Figures M.3–M.6 

Of course, figure M.3 is simply figures M.1 and M.2 overlaid, 

and figure M.4 is simply figure M.3 with different labeling. 

For figures M.5 and M.6, we need to compute the sum of 

the costs of the false-positive and false-negative errors to en-

able plotting the curving black line on the two figures. We do 

this with one more line of code in the program immediately 

before the OUTPUT statement. For this line we assume that 

false-positive and false-negative errors are equally costly. 

Here is the line: 

Cost = PropFalsePosPub + PropFalseNeg; 

We can easily relax the assumption of equal error costs by 

including the proper multiplicative factor for each term on the 

right-hand side of the equals sign of the statement. Section 

M.7 below explains the mathematics of computing these fac-

tors. 

Finally, there is one more line of code that is (formally) 

required in the DATA step after the END statement, as fol-

lows: 

run; 

This line tells SAS that the specification of the DATA step is 

complete and therefore SAS can now “run” (i.e., compile and 

then execute) the statements in the DATA step to generate the 

GraphData data set containing the data needed to draw figures 

M.1–M.6. 

M.6. Generalization of Figure M.6 

Figures M.1–M.6 illustrate the concepts. However, figure 

M.6 is the correct graph for Journal A only if all the research 

studies in the field are exactly like the research study that was 

used (i.e., with a two-sample t-test, with a mean difference of 

20, etc.) as specified in the values of the parameters in the 

RETAIN statement. But, of course, the research studies in any 

field are all different. So, we must generalize the preceding 

discussion.  

We can easily do the generalization in our thought exper-

iment by using the program above to draw a (imaginary) cor-

rect version of figure M.6 for the main result in each research 

study that might be submitted to Journal A. That is, for each 

study, we can change the two-sample t-test program code 

above into the correct code for the main result in the study. 

For each study, we can do this (in our imagination) with two 

steps: 

1. Replace the three lines above that compute the value of the 

TestPower variable as a function of the threshold p-value 

with the lines of code that are appropriate to compute the 

test power as a function of the threshold p-value for the 

main result in the new research study. 

2. Insert the correct values of the parameters referenced in 

the new lines of code in the RETAIN statement.  

This is all we need to do to convert the program for any other 

specific research study because the three lines of code and the 

code to set the values of the parameters are the only lines that 

are unique to the t-test case and the other lines of code in the 

program operate at a more general level. 

Appropriate lines of code to compute the value of 

TestPower are available for any sensible research study either 

through statistical theory or, if the relevant theory isn’t avail-

able, through an appropriate computer simulation. Thus, for 

the main result in any research study, we could in theory insert 

(a) the appropriate values of the parameters of the model 

equation of the studied relationship and (b) the appropriate 

values of the parameters of the research design into the RE-

TAIN statement at the beginning of the program. And we 

could insert in the DO loop the appropriate lines of code to 

compute the power. Then the program could compute the path 

of the green false-negative cost line behind figure M.6 as a 

function of the threshold p-value for that research study and 

thus we could use the data from the program to draw the cor-

rect version of figure M.6 for that study. 

Thus, we can in our imagination generate a correct version 

of figure M.6 for every research study that might be submitted 

to Journal A, which we can assume leads to tens of thousands 

of imaginary graphs. Of course, in generating these graphs for 

the different research studies, we must specify (in the RE-

TAIN statement) the true values of the relevant parameters of 

the model equation of the relationship between variables un-

der study though, of course, we invariably don’t know the true 

values. (Generally, the purpose of a research study is, in part, 

to determine estimates of these values.) However, in our 

thought experiment we can assume that we know the true pop-

ulation values of the parameters because this advances the ar-

gument without harming the argument’s validity, as we shall 

see. 

Technical note: In the preceding discussion we don’t need 

to know the true model equation for the relationship between 

variables we are studying, but we do need to know the true 

population values of the parameters of the model equation 

that we are using. The true population values of the parame-

ters of a specified model equation of a relationship between 

variables are sensibly defined as the parameter estimates that 

we would obtain if we were to perform an appropriate empir-

ical-research study to derive estimates of the parameter val-

ues, and if we were to use perfectly accurate and perfectly 

precise measuring instruments to measure the values of the 

relevant variables, and if we were to use a sample that in-

cludes every entity in the population (and if we were to do 

everything according to the rules behind the procedures). 

Thus, in principle, the true population values of parameters 

are empirically obtainable for any population and any model 

equation, though obtaining the values would generally be 
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prohibitively expensive. So, in practice, the true population 

values of parameters of model equations generally aren’t 

knowable, though they are estimable through appropriate re-

search. 

Note how the point of view has changed from the view of 

performing the same research study with a two-sample t-test 

1000 times to the view of performing every research study that 

might be submitted to Journal A 1000 times. We imagine per-

forming these multiple sets of 1000 research studies to set the 

scene. Then, for each of these research studies, we imagine 

running the above program simulating the study (with the 

proper modifications) to draw the correct version of figure 

M.6 for the study. 

In each of the tens of thousands of cases, we will obtain a 

graph that is similar to figure M.6. The red false-positive line 

will always be the same because, as discussed above, the 

false-positive line doesn’t depend on properties of the re-

search studies but depends only on two properties of Journal 

A—the percentage of research hypotheses that are true in 

Journal A’s field (e.g., 30%) and the percentage of positive 

results that are submitted to Journal A that are published (e.g., 

90%).  

In contrast, the green false-negative error line, though it 

will always be monotonically decreasing, will move around 

from graph to graph. That is, the slope and the horizontal and 

vertical positions of the point of inflection of the green line 

will change depending on the effect size under study (which 

will sometimes be zero or essentially zero) and will change 

depending on the properties of the statistical test. (The left and 

right endpoints of the false-negative error line are always 

fixed at particular values, as explained and illustrated in the 

computer program output BowlGraphFinal-results.pdf in the 

supplementary information.) The fact that the false-negative 

line moves around implies that the optimal threshold p-value 

for each specific research study (as indicated by the lowest 

point on the bowl on each graph) will generally be different 

from graph to graph. 

Will all the tens of thousands of graphs be similar to figure 

M.6 in the sense of having a bowl with a minimum point? 

Yes. This is because (assuming a non-zero effect) conceptu-

ally in each case all that is changing from graph to graph is 

the form of the monotonically increasing relationship between 

the threshold p-value and the power of the test (as specified 

by the power equations and by the parameters of the situa-

tion). And, regardless of the exact form of this relationship, it 

will (because it is monotonically increasing) generate a mon-

otonically decreasing relationship between the threshold p-

value and the false-negative error rate, as illustrated in the 

specific case in figure M.2.  

Thus, the geometry of the situation implies that when the 

false-positive and false-negative error costs (as computed 

from the error rates) are added together, the sum will be 

shaped like the bowl in figure M.6 though, as noted, the low-

est point on the bowl will generally be different from graph to 

graph. The computer output BowlGraphs-results.pdf in the 

supplementary information illustrates some different bowls. 

For the purpose of the present discussion, a sensible way 

to interpret the tens of thousands of graphs is: The vertical 

arrow on each graph indicates the optimal threshold p-value 

for Journal A if all the research studies in the field were the 

same as the study behind the graph. 

So, after we have generated the tens of thousands of im-

aginary graphs, let us imagine computing the “average” of the 

optimal threshold p-values shown on the graphs. Arguably, 

the “average” of the minimum points on the bowls for all the 

graphs defines the optimal threshold p-value for the journal 

because this value minimizes the sum of the overall costs of 

the two types of errors across all the papers submitted or po-

tentially submitted to the journal. 

We might wonder which measure of central tendency we 

should use to compute the “average”—whether it should be a 

simple mean or some other function of the optimal threshold 

p-values from the tens of thousands of graphs, possibly even 

weighting each result to reflect its importance. Of course, our 

goal here would be to choose the averaging function that best 

minimizes the sum of the costs of the errors across all the re-

search studies in the field.  

However, as a practical matter, the issue of the precise 

way to compute the average is less important because we can’t 

compute the average of these imaginary values in practice be-

cause we don’t know the values. The key point is that the 

thought experiment implies that there is a sensible optimal av-

erage threshold p-value for a journal though the experiment 

can’t tell us what the numeric value is. 

It is noteworthy that many studied relationships between 

variables don’t exist (or at least don’t detectably exist) in a 

population, and thus the null hypothesis is true (or in effect 

true) in these cases. If we run the preceding program for a 

research study that is studying one of these nonexistent rela-

tionships, and if we correctly tell the program that the effect 

size in the study is zero or very close to zero, then the program 

will correctly tell us that the optimal threshold p-value in this 

case is zero or very close to zero.  

The threshold p-value of zero is intuitively sensible for 

these studies (which are limiting cases) because if any one of 

them reports a positive result, then it will be a false-positive 

result, and a threshold p-value of zero will correctly prevent 

the false-positive result from being published. (A false-nega-

tive error can’t happen in these cases because the relationship 

doesn’t exist.) This leads to the question of how to handle the 

averaging discussed above in the cases when relationships be-

tween the variables don’t exist in the population which, 

though we never know this to be the case in practice, we do 

know in the thought experiment. Might the preponderance of 

these cases somehow improperly disturb the balance?  

Seemingly not, because the algebra is correct. However, 

we don’t need to deal with this problem because we don’t in-

tend to do the averaging because, as noted, we can’t do it in 
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practice because the values we would average are unavailable 

because they are unknown. 

Technical note: The preceding two paragraphs are correct 

if the percentage of research hypotheses that are true in Jour-

nal A’s field—PctTrue—is less than 50%, which seems likely 

the case in most fields of science because nature’s secrets are 

hard to unlock. So, researchers are generally correct in their 

research hypotheses less than half the time. However, if 

PctTrue is greater than 50% in some field of science, and if 

the effect size in a particular research study is zero or very 

close to zero, then the program tells us that the optimal thresh-

old p-value for this case is 1.0 or very close to 1.0. This some-

what surprising outcome is a consequence of the underlying 

mathematics behind minimizing the sum of the costs of the 

errors and is illustrated in BowlGraphExamples-Output.pdf in 

the Supplementary Information. In this case, the bowl is trun-

cated. 

Summarizing this subsection, we can generalize the spe-

cific case depicted in figure M.6 by generating in our imagi-

nation an equivalent figure for each research study that might 

be submitted to Journal A. The “average” of the horizontal 

positions of the vertical arrows shown on the set of such fig-

ures is the optimal threshold p-value for the journal in the 

sense that this value minimizes the sum of the costs of the 

false-positive and false-negative errors made by the threshold 

p-value in selecting papers to consider for publication. 

M.7 Costs and Benefits 

The preceding sections focus on minimizing the sum of the 

costs of false-positive and false-negative results when these 

errors occur. However, the discussion doesn’t refer to the ben-

efits of true-positive and true-negative results, which also reg-

ularly occur. This raises the question whether we need to con-

sider the two benefits together with the two costs in the math-

ematical analysis. This section addresses that question, ex-

plaining how the benefits can be handled in terms of the costs. 

The discussion also further explores the proposed mathemat-

ical model of statistical hypothesis testing. 

As discussed above in appendix B, if we consider a stand-

ard research hypothesis, there are two possible states of af-

fairs, which are 

(a) the research hypothesis is true and thus a relationship ex-

ists between the associated variables or  

(b) the research hypothesis is false and thus the corresponding 

null hypothesis is either true or is in effect true, and thus 

there is effectively no relationship between the variables.  

We can represent this situation for all the research studies that 

are candidates for Journal A with figure M.7 

 

 

Figure M.7. A diagram representing the set of all the re-

search studies that are potential candidates for submis-

sion to Journal A prior to performing the research. The 

set is broken into two natural subsets reflecting the re-

search studies in which the main research hypothesis is 

true (top rectangle) and the research studies in which the 

main research hypothesis is false and thus the null hy-

pothesis is true or is at least in effect true (bottom rec-

tangle). The area of each inner rectangle indicates the 

proportion of research studies that are in the associated 

subset. 

Of course, for any given new research hypothesis, we 

don’t know ahead of time which subset it belongs to. This is 

because determining whether a studied new research hypoth-

esis is true is generally a key goal of the research. 

For a concrete example, the location of the green horizon-

tal line in figure M.7 implies that we continue to assume that 

𝜋 = 0.3 of the main research hypotheses in papers that might 

be submitted to Journal A represent true hypotheses though 

we can readily change this proportion without harming the ar-

gument. Here, 𝜋 (expressed as a proportion) is conceptually 

identical to the variable PctTrue (expressed as a percentage) 

in the SAS program above. We use the 𝜋 form here because 

it works better in the algebraic discussion later below. 

Recall that a positive result occurs in a research study if 

the relevant p-value is less than or equal to the journal’s 

threshold p-value. And a negative result occurs if the p-value 

is greater than the journal’s threshold p-value. Thus, in any 

properly completed scientific hypothesis test, there are four 

possible outcomes, which are a true-positive result (𝑇𝑃), a 

true-negative result (𝑇𝑁), a false-positive result (𝐹𝑃), and a 

false-negative result (𝐹𝑁). Thus, we can further partition fig-

ure M.7, breaking the case when the research hypothesis is 

true into possible outcomes of false-negative results and true-

positive results. Similarly, we can break the case when the re-

search hypothesis is false into possible outcomes of true-neg-

ative results and false-positive results. This leads to figure 

M.8 

 

 

True
research

hypotheses

π = 0.3

False
research

hypotheses

1 - π = 0.7

True research hypotheses

False research hypotheses
i.e., the null hypothesis is either true

or is in effect true
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Figure M.8. A partitioned version of figure M.7 showing 

the set of research studies that might be submitted to 

Journal A after the outcomes are obtained. The true re-

search hypotheses are broken into two “cells” (𝐹𝑁 and 

𝑇𝑃), and the false research hypotheses are also broken 

into two cells (𝑇𝑁 and 𝐹𝑃). The figure is organized so 

that positive results are on the right-hand side of the fig-

ure in both the upper and lower rows. Hor = Horizontal. 

As with the rectangles in figure M.7, the area of each cell 

in figure M.8 indicates the proportion of research studies as-

sociated with the cell. For illustration, we assume in the figure 

that the average power of research studies that might be sub-

mitted to Journal A (in cases when the research hypothesis is 

true) is 0.6. This leads to the 40/60 split in both the horizontal 

cell widths and the cell areas in the top row of the figure. We 

also assume that the threshold p-value used by Journal A is 

0.05, and we assume that all the assumptions underlying the 

computations of p-values are properly satisfied, which leads 

to the 95/5 split in both the horizontal cell widths and the cell 

areas in the bottom row. 

Similar to the uncertainty situation in figure M.7, if we 

obtain a positive result in a research study, we can’t defini-

tively tell whether the result is a true-positive result or a false-

positive result. Also, if we obtain a negative result, we can’t 

definitively tell whether it is a true-negative result or a false-

negative result. However, in any case, we will usually have a 

studied opinion as to the correct interpretation. And if the sit-

uation is interesting enough, then we or other researchers will 

perform further research that will help to confirm or discon-

firm our opinions about the postulated relationship between 

the variables, which is standard science. 

We can calculate the area of each of the four cells in figure 

M.8 (as measured in terms of each cell’s row and column pro-

portions) to give us the proportion or probability of the re-

spective outcome. For example, the area of the upper-right 

cell for true-positive results is 0.3 × 0.6 = 0.18. Therefore, 

under the assumptions, 18% of all the research studies that 

might be submitted to Journal A will be reporting true-posi-

tive results. 

The four possible outcomes in figure M.8 are exhaustive 

for the set of properly performed research studies that are can-

didates for Journal A. Therefore,  

 Pr(𝑇𝑃) + Pr(𝐹𝑃) + Pr(𝑇𝑁) + Pr(𝐹𝑁) = 1  

where Pr(𝐸) indicates the probability of event 𝐸. 

We can use the areas for the two types of positive results 

(i.e., 𝑇𝑃 and 𝐹𝑃) to determine the proportion of the results 

published in Journal A that are false-positive errors under the 

assumptions that all positive results are published, and only 

positive results are published. (Both these assumptions are 

generally false for a journal, but they are generally close to 

true—we take account of this additional complexity later be-

low.) As noted, the area for TP results in the top row of figure 

M.8 is 0.18. The area for the FP results in the bottom row is 

0.7 × 0.05 = 0.035. So, under the assumptions, the proportion 

of the published main results in Journal A that are false-posi-

tive errors is 0.035 / (0.18 + 0.035) = 16.3%. 

The preceding discussion is about false-positive and false-

negative errors that are due to chance, and the discussion ig-

nores false-positive and false-negative errors that are due to 

researcher errors. If we take proper account of false-positive 

errors due to researcher errors, then this will cause the per-

centage of published results that are false-positive errors to be 

higher, which will widen the lower-right false-positive cell in 

figure M.8. 

In any field of scientific research, it is hard to know the 

proportion of false-positive errors that are due to researcher 

errors versus the proportion due to chance because, for tech-

nical reasons, the proportions are hard to measure. However, 

to establish a perspective, let us assume that half of the false-

positive errors published in Journal A are false-positive errors 

due to researcher errors. We can visualize this by noting that 

if half of the false-positive errors are due to researcher errors, 

and if the threshold p-value is 0.05, then the 𝐹𝑃 cell in the 

lower right of figure M.8 will be twice as wide as shown in 

the figure. Of course, this widening increases the rate of pub-

lished false-positive errors. Similarly, if we were to properly 

take account of false-negative errors due to researcher errors, 

then this would widen the upper-left 𝐹𝑁 cell in the figure, 

which would reduce the rate of true-positive results, which 

would further increase the rate of published false-positive er-

rors. 

The idea of researcher-caused errors suggests that the 

16.3% estimate of published false-positive errors computed 

three paragraphs above might be roughly doubled, or more 

than doubled, so somewhere between 30% and 50% of pub-

lished positive results will be false-positive errors. Though it 

is speculative, this range of values is consistent with the re-

sults of direct replication studies in social science (Camerer et 

al. 2018). 

To aid understanding, imagine a computer app that is pro-

grammed to draw figure M.8 on a screen. Imagine that the app 

has three user-controllable “sliders” that allow the user to 

specify: 

(a) 𝜋, the percentage of the research hypotheses in the jour-

nal’s field that are true, with possible slider positions rang-

ing in small steps between 0 and 100  

 

 

True
research

hypotheses

π = 0.3

False
research

hypotheses

1 - π = 0.7

FN
Hor % = 40

TP
Hor % = 60

TN
Hor % = 95

FP
Hor % = 5
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(b) the threshold p-value used by the journal, with possible 

slider positions ranging in small steps between, say, 0.001 

and 0.3, and  

(c) the average power in research studies in the journal’s field, 

with possible slider positions ranging in small steps be-

tween 0 and 1. If the user moves one of the three sliders in 

the app, then this will cause one or two of the blue, green, 

and red interior partitions in figure M.8 on the screen to 

move accordingly. 

The value of 𝜋, i.e., the rate of true research hypotheses in 

the field, is sensibly viewed as a property of the field, and the 

variable for this property is generally out of our direct control 

in any given field of empirical research. So, in using the app, 

we would generally set the slider for 𝜋 to its estimated “natu-

ral” value for papers submitted to Journal A and then not ad-

just it further. Interestingly, it is hard to determine the correct 

natural value of 𝜋 for a scientific journal. This is because, to 

measure it, we would need to track negative results in the jour-

nal’s field but, as noted above in appendix E, that difficult task 

is sensibly judged to be not worth the effort in most areas of 

scientific research. However, though 𝜋 is clearly an important 

variable in the model, the fact that the value of 𝜋 is hard to 

determine isn’t a serious problem, as we will see below. 

So, after setting the value of 𝜋 in the app at our best esti-

mate of its natural value, we focus our attention on the thresh-

old p-value and the average power, both of which are more 

easily adjusted in empirical research. Of course, a journal can 

adjust its threshold p-value directly by simply specifying a 

new threshold value. And a researcher can increase the aver-

age power in research studies by using more powerful re-

search designs, such as by (a) increasing the precision of the 

measuring instruments, (b) increasing the sample size, or (c) 

using various other effective research-design principles to in-

crease the power of their research. 

The app could be designed to emulate the two-sample t-

test case discussed above beginning in section M.4, using the 

parameter values specified in the RETAIN statement. More 

generally, the app could be designed so that, in addition to 

using the power function for a specific instance of the two-

sample t-test, the app could also accept a user-specified func-

tion to compute the statistical power as a function of the 

threshold p-value. Designing the app to accept a user-speci-

fied power function will allow us (if we know the correct 

function and know the correct slider settings) to use the app 

to represent the average situation in the set of research studies 

that might be submitted to Journal A. 

In addition to displaying figure M.8, the app could also 

display the percentage of the published results that are false-

positive errors for the given slider settings, showing us the 

extent of the “replication crisis” under the conditions speci-

fied by the sliders. 

Note that the relationships between all the variables under 

discussion are somewhat complicated because if we move one 

of the three sliders in the app then, as noted, this will cause 

one or two of the interior partitions in figure M.8 to move, but 

it may also cause another slider to move. To help us control 

this situation, the app would allow us to “freeze” one of the 

sliders (often 𝜋), so the frozen slider’s value is prevented from 

changing if other sliders are moved. Then (depending on our 

choice) if we move one of the two unfrozen sliders, then the 

other unfrozen slider may move accordingly. 

Thus, if we move the slider for 𝜋, then the green horizontal 

partition in figure M.8 will move up or down, but the blue and 

red vertical partitions won’t move left or right, so the cell 

widths won’t change, so the sliders for the power and the 

threshold p-value won’t change. Still, if we move the slider 

for 𝜋, the heights of all four cells will change, so the cell areas 

and hence the cell probabilities will all change. 

In contrast, since, for a given research design, power de-

pends on the threshold p-value, if we move the slider for the 

threshold p-value, then (assuming that 𝜋 is frozen) this will 

cause the slider for the power to move—the lower the thresh-

old p-value, the lower the power and, therefore, the narrower 

the true-positive cell. Thus, if we move the slider for the 

threshold p-value, all four cell probabilities will change. Of 

course, the exact relationship between the threshold p-value 

and the power depends on the power function discussed four 

paragraphs above. 

Though it is mathematically necessary, we would not nor-

mally think in a practical sense that the relationship also 

works in the other direction—that changing the average 

power in research studies would somehow change the thresh-

old p-value. This is because we view the journal as choosing 

the threshold p-value, and the threshold p-value as setting the 

power (through the power function) in the fixed prevailing re-

search climate, and we don’t view these events in the opposite 

order of causation. So, if we try to move the slider for power, 

it won’t move because, in the fixed prevailing a research cli-

mate, the power is controlled by the journal’s threshold p-

value, and not the other way around. 

So, in studying the three-slider app, we would only need 

to set 𝜋 and the threshold p-value, and the value of the power 

would be set indirectly by the value of the threshold p-value 

in conjunction with the power function. Here, it is helpful to 

keep in mind that the figure and the app to draw the figure are 

representing the set of research studies in a field of research. 

A key feature of the app is that if we set the three sliders 

at any (mathematically permissible) values of our choosing, 

then the app tells us (through the computable cell areas) the 

associated cell probabilities of the four possible outcomes—

Pr(𝑇𝑃), Pr(𝐹𝑃), Pr(𝑇𝑁), and Pr(𝐹𝑁). These cell probabili-

ties play a central role in the following discussion. 

With figure M.8 in hand, let us now consider some im-

portant ideas discussed by Miller and Ulrich (2019). Their ar-

ticle is titled “The quest for an optimal alpha”, where “alpha” 

is another name for the threshold p-value. Their article builds 

on important earlier work by Mudge, Baker, Edge, and Hou-

lahan (2012). 
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Miller and Ulrich sensibly specify that the average payoff, 

𝒫, for a single study for a researcher conducting a set of re-

search studies in a “research area” is 

𝒫 = 

𝒫𝑇𝑃Pr(𝑇𝑃) + 𝒫𝐹𝑃Pr(𝐹𝑃) + 𝒫𝑇𝑁 Pr(𝑇𝑁) + 𝒫𝐹𝑁 Pr(𝐹𝑁) 

 (1)  

where the subscripted 𝒫s are the individual average scientific 

and social payoffs for each of the four possible outcomes 

(2019, p. 4). Of course, the average payoffs for true results 

(i.e., 𝒫𝑇𝑃 and 𝒫𝑇𝑁) are positive numbers (or possibly zero for 

𝒫𝑇𝑁) and the average payoffs for false results (i.e., 𝒫𝐹𝑃  and 

𝒫𝐹𝑁) are negative numbers. 

Note how the overall average payoff, 𝒫 in (1) depends on 

the threshold p-value being used in the research because, as 

suggested by figure M.8, the four probabilities in (1) all de-

pend on the threshold p-value if 𝜋 is (sensibly) held constant. 

Miller and Ulrich reasonably say that the optimal alpha 

(i.e., the optimal threshold p-value) for a researcher in a re-

search area is the value that maximizes the value of 𝒫 in (1) 

for the researcher in the area. So, Miller and Ulrich sensibly 

wish to determine the threshold p-value that maximizes 𝒫. 

In the present discussion, instead of using the Miller and 

Ulrich point of view of a researcher in a research area, we use 

their equation (1) from the point of view of a scientific jour-

nal, Journal A. So, the “researcher” in the Miller and Ulrich 

point of view becomes Journal A. And the “research area” in 

the Miller and Ulrich point of view becomes all the research 

studies that are potential candidates for submission to Journal 

A. The four payoffs under this point of view are the average 

scientific and social payoffs for the four types of events asso-

ciated with publication or refusal of publication of a report of 

the indicated type in Journal A. Of course, like a researcher in 

a research area, Journal A wishes to choose the threshold p-

value that will maximize the overall payoff, 𝒫, for the journal, 

as specified by equation (1). 

We can simplify things by noting from figure M.8 that 

  Pr(𝐹𝑁) + Pr(𝑇𝑃) = 𝜋  

and  

  Pr(𝑇𝑁) + Pr(𝐹𝑃) = 1 − 𝜋.  

So, we can solve the preceding two equations for Pr(𝑇𝑃) and 

Pr(𝑇𝑁) and then substitute in (1) to get the overall payoff in 

terms of the four subscripted 𝒫s, Pr(𝐹𝑁), Pr(𝐹𝑃), and 𝜋. 

This yields 

𝒫 = 𝒫𝑇𝑃[𝜋 − Pr(𝐹𝑁)] + 𝒫𝐹𝑃 Pr(𝐹𝑃) 

              +𝒫𝑇𝑁[1 − 𝜋 − P r(𝐹𝑃)] + 𝒫𝐹𝑁 Pr(𝐹𝑁) 

    = (𝒫FN − 𝒫TP)Pr(𝐹𝑁) + (𝒫FP − 𝒫TN)Pr(𝐹𝑃) 

              + π𝒫TP + (1 − π)𝒫TN. 

As noted, the goal of Journal A is to find the threshold p-value 

that maximizes 𝒫 in (1), which is equivalent to maximizing 

𝒫 in (2). In this maximization, we can ignore the last two 

terms in (2), i.e., π𝒫TP and (1 − π)𝒫TN, because those terms 

are constants that don’t depend on the threshold p-value for 

Journal A, so they don’t play a role in the maximization. 

Therefore, we wish to find the threshold p-value that max-

imizes  

(𝒫FN − 𝒫TP)Pr(𝐹𝑁) + (𝒫FP − 𝒫TN)Pr(𝐹𝑃). 

Expression (3) shows that we can do the maximization in 

terms of Pr(𝐹𝑁) and Pr(𝐹𝑃) which, of course, both depend 

on the threshold p-value, and we needn’t consider Pr(𝑇𝑃) and 

Pr(𝑇𝑁). 

Note how the two terms in (3) are sensibly balancing the 

payoffs and costs of the four types of results. 

If we study the mathematics of the discussion in this sec-

tion, we see that the maximization of (1), (2), or (3), as applied 

to a journal, is conceptually equivalent to the ideas discussed 

above in sections M.1–M.6. However, the discussion in sec-

tions M.1–M.6 doesn’t proceed by maximizing (3) but pro-

ceeds by minimizing the negative of (3), which is an equiva-

lent way to do the analysis. 

That is, the negative of (3) defines the two dynamic terms 

of the relevant loss function. Figure M.6 shows (as the bowl 

in the figure) the computed loss function (for the specific two-

sample t-test case) as a function of the threshold p-value. 

In the graphical argument discussed above in section M.2, 

the payoff differences in (3) are (behind the scenes) now re-

versed because we are minimizing the negative of (3), so the 

payoff differences become 𝒫TP − 𝒫FN and 𝒫TN − 𝒫FP. These 

values are implicitly respectively multiplied by Pr(𝐹𝑁) and 

Pr(𝐹𝑃) in the step above in section M.2 of converting from 

figure M.3 (which shows the probabilities of false-negative 

and false-positive errors) to figure M.4 (which shows the 

costs of the errors). The discussion shows the simplest possi-

ble case in which 𝒫TP − 𝒫FN and 𝒫TN − 𝒫FP are both equal to 

1.0. This state of affairs will occur if, for example, the four 

scientific and social payoffs in the preceding sentence are re-

spectively, 0.5, −0.5, 0.0, and −1.0. Of course, the correct val-

ues of the four payoffs for any journal will generally be dif-

ferent from those values, but in the thought experiment we 

assume that we know the four payoffs (or at least we know 

the two payoff differences), so we could readily set the values 

to the correct values. 

In the SAS program that generates the data behind graphs 

above in sections M.3–M.5, the relevant error costs are mul-

tiplied by the relevant probabilities in the program line that 

assigns a value to the Cost variable in section M.5. Being the 

source of the graphs, the SAS program is likewise showing 

the simplest possible case in which both payoff differences 

are equal to 1.0. 

For theoretical completeness and for greater realism, we 

could sensibly add six more sliders to the app: 

(a) a slider for 𝒫TP − 𝒫FN and a slider for 𝒫TN − 𝒫FP 

(b) a slider for the percentage of the submitted positive results 

that are published in Journal A, ranging between 0 and 100 

(and which will be somewhat less than 100 for reputable 

journals because journals reject some papers with positive 

results due to interest or quality shortcomings)  

(c) a slider for the percentage of negative results that are pub-

lished in Journal A, ranging between 0 and 100 (and which 

      (3) 

(2) 
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will generally be slightly greater than zero for most jour-

nals) 

(d) a slider for the percentage of false-positive errors in Jour-

nal A’s field that are due to researcher errors, ranging be-

tween 0 and 100, and  

(e) a slider for the percentage of false-negative errors in Jour-

nal A’s field that are due to researcher errors, ranging be-

tween 0 and 100.  

The mathematical role of each slider value in the computa-

tions would have to be properly handled in the app’s mathe-

matical algorithm to draw figure M.8. Due to the various in-

teractions of the sliders, that isn’t a simple matter, but it could 

be done through careful programming. Mathematical consid-

erations imply that, depending on the settings of the other slid-

ers, some values of some sliders will be unavailable. We 

might also add other sensible sliders to the app, such as a 

slider for the payoff of a published surprising negative result. 

However, further sliders would generally have low impact on 

Pr(𝐹𝑁) and Pr(𝐹𝑃), which are our main interest to enable us 

to find the threshold p-value that maximizes (3). 

Note that if we knew the correct settings for the 3 + 6 = 9 

sliders, and if the app is programmed with the correct power 

function, then the app would have enough information to en-

able it to draw the correct version of figure M.6 in section M.2 

above for Journal A. So, since the app would take correct ac-

count of many of the relevant functions and variables, we 

could in theory use the app to determine the exact optimal 

threshold p-value for a journal. 

However, for any scientific journal (or for almost any sci-

entific “research area”), we don’t know the correct forms of 

the functions, and we don’t know the correct numeric values 

of any of the sliders in the app. In theory, we could estimate 

all the functions and values required by the app, but as Miller 

and Ulrich (2019) note in their section 2, we must estimate 

these functions and values “rather subjectively”. This is be-

cause for Journal A we don’t know the detailed functional re-

lationship between the threshold p-value and the probabilities 

of false-negative and false-positive errors (as exemplified for 

the hypothetical case above in figures M.1 and M.2). Also, 

though the four types of payoffs of results are clearly present 

in scientific research, the payoff amounts are difficult or im-

possible to reliably measure or estimate in a research area. 

Also, science sensibly doesn’t track negative results, and sci-

ence sensibly doesn’t manipulate threshold p-values in de-

signed experiments. Therefore, we lack the data we would 

need to mathematically determine the optimal threshold p-

value for a journal. So, the argument in this appendix enables 

us to show that the optimal threshold p-value for a journal ex-

ists, but we must determine the numeric optimal value for a 

journal by other means. 

Therefore, the app discussed above isn’t useful in a prac-

tical sense, though it is pedagogically useful as an imaginary 

tool to assist understanding. 

The discussion in this appendix M is in terms of minimiz-

ing false-positive and false-negative error costs. Due to 

symmetry, a strictly parallel discussion is possible in terms of 

maximizing the benefits of true-positive and true-negative re-

sults. That discussion will lead to the same conclusion that the 

same optimal threshold p-value for a journal exists and is 

unique to the journal. A view of this maximize-the-benefits 

approach appears on page 6 in the document Bowl-

GraphMain-Output.pdf in the Supplementary Information for 

the present paper. 

In summary, the discussion in this section has explored a 

mathematical model of statistical hypothesis testing. The dis-

cussion implies that we need only use the two payoff differ-

ences, 𝒫TP − 𝒫FN and 𝒫TN − 𝒫FP , multiplied respectively by 

Pr(𝐹𝑁) and Pr(𝐹𝑃) to carry out the mimization in the 

thought experiment to show that the optimal threshold p-value 

for a journal exists. That is, we need only consider the costs 

of the errors, and we needn’t directly consider the benefits of 

the correct conclusions. This is because we are appropriately 

indirectly including the benefits (i.e., 𝒫TP and 𝒫TN) in compo-

site cost terms in the loss function. 

 

M.8 Refinements and Summing Up 

It is useful to consider refinements to the mathematical model 

discussed above in this appendix that would make the model 

more closely resemble real empirical research. For example, 

the model assumes that a certain percentage of the research 

hypotheses in the journal’s field are true (𝜋 = PctTrue), and 

the remainder of the hypotheses are false and thus the null 

hypothesis is true (or is in effect true) in these cases. This state 

of affairs is illustrated above in figure M.7 where the horizon-

tal green line indicates the borderline between true and false 

research hypotheses.  

However, in reality, there is no hard borderline between 

true research hypotheses and false research hypotheses and 

instead the borderline is fuzzy, as noted above in appendix B. 

That is, there is (presumably) a continuum, which we could 

model. However, such modeling may be unnecessary because 

𝜋 is absent from the dynamic terms of the cost function (3) in 

the preceding section.  

There may be other refinements that we might make to the 

model. However, it seems likely (though not certain) that 

every realistic refinement will lead to total-cost bowls with 

minimum points, and the “average” of the minimum points 

across all the research studies in the field sensibly defines the 

optimal threshold p-value for the journal, which is the main 

conclusion of this appendix. 

The thought experiment tells us that the optimal threshold 

p-value for a scientific journal exists but, as noted, the exper-

iment can’t tell us the numeric value of the optimal threshold 

p-value for a journal because we don’t know the values of the 

relevant payoffs and probabilities used in the argument. So, a 

journal must use another method to determine the numeric 

value. As discussed in section 8 of the body of this paper, ed-

itors and researchers determine the numeric optimal value 

based on experience, intuition, and norms. This approach is 
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sensible because editors and researchers generally agree that 

it is fair, fast, near optimal, and, so far, nobody has thought of 

a viable better approach. 

Supplementary Information 

Supplementary information for this paper with instructions, 

computer programs, and PDF output from the programs is at 

https://matstat.com/optp.zip   

References  

APA (American Psychological Association) (1952), Publi-

cation Manual of the American Psychological Associa-

tion. Washington, DC: American Psychological Associa-

tion. 

APA (American Psychological Association) (1957), Publi-

cation Manual of the American Psychological Association 

1957 Revision. Washington, DC: American Psychological 

Association. 

Baker, A. (2022), “Simplicity.” The Stanford Encyclopedia 

of Philosophy (Summer 2022 Edition), ed. E. N. Zalta 

https://plato.stanford.edu/archives/sum2022/entries/sim-

plicity/  

Benjamin, D.J., Berger, J.O., Johannesson, M. et al. (2018), 

“Redefine Statistical Significance.” Nature Human Be-

haviour 2, 6–10. https://doi.org/10.1038/s41562-017-

0189-z  

Benjamini Y., and Hochberg Y. (1995), “Controlling the 

False Discovery Rate: A Practical and Powerful Approach 

to Multiple Testing.” Journal of the Royal Statistical So-

ciety, Series B 57 (1): 289–300. 

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x  

Białek, M., Misiak, M., and Dziekan, M. (2023), “The Vi-

cious Cycle that Stalls Statistical Revolution.” Nature Hu-

man Behaviour 7, 161–163. 

https://doi.org/10.1038/s41562-022-01515-3  

Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T.-H., Hu-

ber, J., Johannesson, M., Kirchler, M., et al. (2018), 

“Evaluating the Replicability of Social Science Experi-

ments in Nature and Science Between 2010 and 2015.” 

Nature Human Behaviour 2: 637–44. 

https://doi.org/10.1038/s41562-018-0399-z  

Campbell, H., and Gustafson, P. (2019), “The World of Re-

search Has Gone Berserk: Modeling the Consequences of 

Requiring ‘Greater Statistical Stringency’ for Scientific 

Publication.” The American Statistician 73:sup1: 358–73. 

https://doi.org/10.1080/00031305.2018.1555101 

Cox, D. R. (1977), “The Role of Significance Tests” (with 

discussion). Scandinavian Journal of Statistics 4: 49–70. 

https://www.jstor.org/stable/4615652  

Errington, T. M., Mathur, M., Soderberg, C. K., Denis, A., 

Perfito, N., Iorns, E., and. Nosek, B. (2021), “Investigat-

ing the Replicability of Preclinical Cancer Biology.” eLife 

10:e71601. https://doi.org/10.7554/eLife.71601  

Fisher, R. A. (1925) Statistical Methods for Research Work-

ers. Edinburgh: Oliver and Boyd. The 14th edition of this 

book appears in Fisher (1990). http://psychclas-

sics.yorku.ca/Fisher/Methods/chap1.htm  

Fisher, R. A. (1990) Statistical Methods, Experimental De-

sign, and Scientific Inference. Oxford, UK: Oxford Uni-

versity Press. 

Gönen, M, Johnson, W. O., Lu, Y., and Westfall, P. H. 

(2019), “Comparing Objective and Subjective Bayes Fac-

tors for the Two-Sample Comparison: The Classification 

Theorem in Action.” The American Statistician, 73:1, 22-

31. https://doi.org/10.1080/00031305.2017.1322142  

Habiger, J., and Liang, Y. (2022), “Publication Policies for 

Replicable Research and the Community-Wide False Dis-

covery Rate.” The American Statistician 76 (2): 131-14. 

https://doi.org/10.1080/00031305.2021.1999857 

Ioannidis, J. P. A. (2005), “Why Most Published Research 

Findings Are False.” PloS Medicine 2 (8): e124. 

https://doi.org/10.1371/journal.pmed.0020124  

Jager, L., and Leek, J. T. (2014), “An Estimate of the Sci-

ence-Wise False Discovery Rate and Application to the 

Top Medical Literature” (with discussion). Biostatistics 

15 (1): 1–45. https://doi.org/10.1093/biostatistics/kxt007 

JEP (Journal of Experimental Psychology) (1960), Volume 

60, Issue 1 (entire issue with front and back covers). 

https://archive.org/details/sim_journal-of-experimental-

psychology-general_1960-07_60_1/mode/2up  

Johnson, V. E., Payne, R. D., Wang, T., Asher, A., and Man-

dal, S. (2017), “On the Reproducibility of Psychological 

Science.” Journal of the American Statistical Association 

112, 1–10. 

http://dx.doi.org/10.1080/01621459.2016.1240079  

Kennedy-Shaffer, L. (2019), “Before p < 0.05 to Beyond p < 

0.05: Using History to Contextualize p-Values and Signif-

icance Testing.” The American Statistician 73:sup1: 82–

90. https://doi.org/10.1080/00031305.2018.1537891  

Lakens, D., Adolfi, F.G., Albers, C.J. et al. (2018), “Justify 

Your Alpha.” Nature Human Behaviour 2, 168–171. 

https://doi.org/10.1038/s41562-018-0311-x  

Maier M, and Lakens D. (2022), “Justify Your Alpha: A Pri-

mer on Two Practical Approaches.” Advances in Methods 

and Practices in Psychological Science, 5(2): 1−14. 

https://doi.org/10.1177/25152459221080396  

Mayo, D. G. (2018), Statistical Inference as Severe Testing: 

How to Get Beyond the Statistics Wars. Cambridge, UK: 

Cambridge University Press. 

Melton, A. W. (1962), “Editorial.” Journal of Experimental 

Psychology 64 (6): 553–557. 

https://doi.org/10.1037/h0045549  

Miller J., and Ulrich R. (2016), “Optimizing Research Pay-

off.” Perspectives on Psychological Science 11(5), 664–

691. https://doi.org/10.1177/1745691616649170  

Miller J., and Ulrich R. (2019), “The quest for an optimal al-

pha.” PLoS ONE 14(1): e0208631. 

https://doi.org/10.1371/journal.pone.0208631  

Mudge, J. F., Baker, L. F., Edge, C. B., and Houlahan, J. E. 

(2012), “Setting an Optimal α That Minimizes Errors in 

Null Hypothesis Significance Tests.” PLoS ONE 7(2): 

e32734. https://doi.org/10.1371/journal.pone.0032734  

NEJM (New England Journal of Medicine) (2023), “Statisti-

cal Reporting Guidelines” (under “Author Center > New 

Manuscripts”). Accessed Dec. 4, 2023. 

https://www.nejm.org/author-center/new-manuscripts  

https://matstat.com/optp.zip
https://plato.stanford.edu/archives/sum2022/entries/simplicity/
https://plato.stanford.edu/archives/sum2022/entries/simplicity/
https://doi.org/10.1038/s41562-017-0189-z
https://doi.org/10.1038/s41562-017-0189-z
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1038/s41562-022-01515-3
https://doi.org/10.1038/s41562-018-0399-z
https://doi.org/10.1080/00031305.2018.1555101
https://www.jstor.org/stable/4615652
https://doi.org/10.7554/eLife.71601
http://psychclassics.yorku.ca/Fisher/Methods/chap1.htm
http://psychclassics.yorku.ca/Fisher/Methods/chap1.htm
https://doi.org/10.1080/00031305.2017.1322142
https://doi.org/10.1080/00031305.2021.1999857
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1093/biostatistics/kxt007
https://archive.org/details/sim_journal-of-experimental-psychology-general_1960-07_60_1/mode/2up
https://archive.org/details/sim_journal-of-experimental-psychology-general_1960-07_60_1/mode/2up
http://dx.doi.org/10.1080/01621459.2016.1240079
https://doi.org/10.1080/00031305.2018.1537891
https://doi.org/10.1038/s41562-018-0311-x
https://doi.org/10.1177/25152459221080396
https://doi.org/10.1037/h0045549
https://doi.org/10.1177/1745691616649170
https://doi.org/10.1371/journal.pone.0208631
https://doi.org/10.1371/journal.pone.0032734
https://www.nejm.org/author-center/new-manuscripts


The Optimal Threshold p-Value for a Scientific Journal—Appendices 33. 

 

Popper, K. R. (1980), The Logic of Scientific Discovery. 

London: Routledge. 

SAS Institute (2021), “Introduction to Power and Sample 

Size Analysis: Customized Power Formulas (DATA Step) 

[web page].” https://documenta-

tion.sas.com/doc/en/pgmsascdc/9.4_3.2/statug/statug_in-

tropss_sect017.htm  

"Significant Debate [online title: It’s time to talk about 

ditching statistical significance],” editorial. (2019), Na-

ture 567: 283. https://doi.org/10.1038/d41586-019-00874-

8  

Tabarrok, A. (2005), “Why Most Published Research Find-

ings are False.” Marginal Revolution [website]. 

https://marginalrevolution.com/?s=why+most+pub-

lished+research  

Wasserstein, R. L., Schirm, A. L., and Lazar, N. A. (2019), 

“Moving to a World Beyond ‘p < 0.05’,” editorial. The 

American Statistician 73:sup1: 1–19. 

https://doi.org/10.1080/00031305.2019.1583913 

 

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/statug/statug_intropss_sect017.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/statug/statug_intropss_sect017.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.2/statug/statug_intropss_sect017.htm
https://doi.org/10.1038/d41586-019-00874-8
https://doi.org/10.1038/d41586-019-00874-8
https://marginalrevolution.com/?s=why+most+published+research
https://marginalrevolution.com/?s=why+most+published+research
https://doi.org/10.1080/00031305.2019.1583913

	Abstract
	1. Relationships Between Variables
	2. Does a Relationship Exist?
	3. Positive Results, Negative Results, and the p-Value
	4. The Perspective of a Scientific Journal
	4.1 Journals Wish to Publish Positive Results
	4.2 Using a Threshold p-Value to Distinguish Between Positive and Negative Results
	4.3 Necessary and Sufficient Conditions for Publication
	4.4 Section Summary

	5. The Threshold p-Value Makes Errors
	5.1. False-Positive Errors
	5.2. False-Negative Errors
	5.3. General Points

	6. Controlling the Error Rates
	7. The Optimal Threshold p-Value
	8. Choosing the Optimal Threshold p-Value
	9. Conclusions
	Appendix A: The Form of a Relationship Between Variables
	Appendix B: Scientific Hypothesis Testing
	B.1 The Research and Null Hypotheses
	B.2 Is the Null Hypothesis or the Research Hypothesis Ever True?
	B.3 Some Exceptions
	B.4 Terminology

	Appendix C: Four Views of the Use of a Threshold p-Value
	Appendix D: How Often Are False-Positive Errors Published in Scientific Journals?
	Appendix E: When Should Scientific Journals Publish Negative Results?
	Appendix F: Could a Journal's Threshold p-Value Be Discretionary on a Paper-by-Paper Basis?
	Appendix G: Implicit Versus Explicit Threshold p-Values for Scientific Journals
	Appendix H: Can a Research Study Generalize from a Sample to the Population If It Doesn’t Use Random Sampling?
	Appendix I: When Do Scientific Journals Need to Use Statistical Significance?
	Appendix J: What If a Research Study Reports Many p-Values?
	Appendix K: Is 0.05 Somewhat Arbitrary?
	Appendix L: Reducing the Misuse of p-Values
	Appendix M: A Proof that the Optimal Threshold p-Value for a Scientific Journal Exists and Is Unique
	M.1 Introduction.
	M.2. Graphical Version of the Argument
	M.3. Mathematical Version of the Argument for Figure M.1
	M.4. Mathematical Version of the Argument for Figure M.2
	M.5. Generating Figures M.3–M.6
	M.6. Generalization of Figure M.6
	M.7 Costs and Benefits
	M.8 Refinements and Summing Up

	Supplementary Information
	References

